精英家教網(wǎng)將兩塊大小一樣含30°角的直角三角板如圖疊放在一起,使它們的斜邊AB重合,直角邊不重合,當(dāng)AB=8cm時,則兩個直角頂點C、D的距離為
 
cm.
分析:首先根據(jù)直角三角板的三角分別為30°,60°,90°,求得直角三角形△AOD,△BOC中的直角邊與斜邊的關(guān)系;根據(jù)兩邊對應(yīng)成比例且夾角相等的三角形相似,易得△DOC∽△AOB,即可求得CD的長.
解答:解:∵∠DAB=∠CBA=60°,∠DBA=∠CAB=30°,
∴∠DAC=∠CBD=30°,
∵∠ADB=∠BCA=90°,
∴OD=
1
2
OA,OC=
1
2
OB,
OD
OA
=
OC
OB
=
1
2
,
∵∠DOC=∠AOB,
∴△DOC∽△AOB,
∴CD:AB=OD:OA=1:2,
∵AB=8cm,
∴CD=4cm.
點評:此題考查了直角三角形的性質(zhì)(直角三角形中,30°的角所對的直角邊是斜邊的一半)與相似三角形的判定與性質(zhì).解題的關(guān)鍵是準(zhǔn)確識圖.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,B精英家教網(wǎng)C=AD=4,AC與BD相交于點E,連接CD.
(1)填空:如圖,AC=
 
,BD=
 
;四邊形ABCD是
 
梯形.
(2)請寫出圖中所有的相似三角形(不含全等三角形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連接CD.
精英家教網(wǎng)
(1)填空:如圖1,AC=
 
,BD=
 
;四邊形ABCD是
 
梯形;
(2)請寫出圖1中所有的相似三角形;(不含全等三角形)
(3)如圖2,若以AB所在直線為軸,過點A垂直于AB的直線為軸建立如圖2的平面直角坐標(biāo)系,保持△ABD不動,將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,△FBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊重合于OA,直角邊不重合,已知A(6,0),AB=OC,AC與OB交于點D,連接BC.
(1)填空,如圖1,D點坐標(biāo)是
 

(2)若將△OCA饒OA的中點P逆時針轉(zhuǎn)90°到△O1C1A1的位置,則C1的坐標(biāo)為
 

(3)在(2)的條件下,求△OAB與△O1C1A1的重疊部分的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊大小一樣含30°角的直角三角板,按如圖①與圖②方式疊放在一起,使得它們的斜邊AB重合,直角邊不重合,連接CD.
(1)填空:
圖①中CD與AB
 
(填“平行”或“不平行”);
圖②中CD與AB
 
(填“垂直”或“不垂直”).并任選一種情況證明.
(2)請寫出圖①中所有的等腰三角形.
(3)若把兩塊三角板按如圖③的方式擺放.已知BC=A1D=4,試求△AB1C的面積?
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案