關(guān)于x的一元二次方程x2+(2k-1)x+k2=0的兩實(shí)數(shù)根x1,x2滿足x12-x22=0.
(1)求k的值;
(2)若雙曲線數(shù)學(xué)公式(x>0)經(jīng)過Rt△OAB斜邊OB的中點(diǎn)D,與直角邊AB交于C(如圖),求S△OBC

解:(1)∵x2+(2k-1)x+k2=0有兩根,
∴△=(2k-1)2-4k2≥0,
即k≤
由x12-x22=0得:(x1-x2)(x1+x2)=0.
當(dāng)x1+x2=0時(shí),-(2k-1)=0,解得k=不合題意,舍去;
當(dāng)x1-x2=0時(shí),x1=x2,△=(2k-1)2-4k2=0,
解得:k=符合題意.

(2)∵y=,k=,
∴雙曲線的解析式為:y=
過D作DE⊥OA于E,則S△ODE=S△OCA=×1=;
∵DE⊥OA,BA⊥OA,
∴DE∥AB,
∴△ODE∽△OBA,
=(2=4,
∴S△OBA=4×=2,
∴S△OBC=S△OBA-S△OCA=2-=
分析:(1)首先由一元二次方程根的判別式得出k的取值范圍,然后由x12-x22=0得出x1-x2=0或x1+x2=0,再運(yùn)用一元二次方程根與系數(shù)的關(guān)系求出k的值,由k的幾何意義,可知S△OCA=|k|.
(2)過D作DE⊥OA于E,則S△ODE=|k|.易證△ODE∽△OBA,根據(jù)相似三角形的面積比等于相似比的平方,得出S△OBA,最后由S△OBC=S△OBA-S△OCA,得出結(jié)果.
點(diǎn)評(píng):本題綜合考查了一元二次方程根的判別式、根與系數(shù)的關(guān)系,反比例函數(shù)比例系數(shù)k的幾何意義,相似三角形的性質(zhì)等多個(gè)知識(shí)點(diǎn).此題難度稍大,綜合性比較強(qiáng),注意對(duì)各個(gè)知識(shí)點(diǎn)的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個(gè)實(shí)根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點(diǎn)橫坐標(biāo)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)若關(guān)于x的一元二次方程x2+4x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請(qǐng)利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請(qǐng)你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時(shí)方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案