如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,求線段CN長.
分析:根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設(shè)CN=x,則DN=NE=8-x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長.
解答:解:設(shè)CN=xcm,則DN=(8-x)cm,由折疊的性質(zhì)知EN=DN=(8-x)cm,
而EC=
1
2
BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,
即(8-x)2=16+x2
整理得16x=48,
解得:x=3.
即線段CN長為3.
點評:此題主要考查了翻折變換的性質(zhì),折疊問題其實質(zhì)是軸對稱,對應(yīng)線段相等,對應(yīng)角相等,通常用勾股定理解決折疊問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN長是(  )
A、3cmB、4cmC、5cmD、6cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在點F處,折痕為MN,則折痕MN的長是( 。
A、4
3
cm
B、4
2
cm
C、4
3
cm
D、4
5
cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形ABCD折疊,使點D落在BC邊的中點E處,點A落在F處,折痕為MN,則線段CN的長是
 
cm,tan∠NEC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為8cm的正方形紙片ABCD折疊,使點D落在BC邊中點E處,點A落在點F處,折痕為MN,則線段CN的長度為
 

查看答案和解析>>

同步練習(xí)冊答案