如圖,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,E是AC的中點(diǎn),DE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△FDC∽△FBD;
(2)求證:

【答案】分析:(1)根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=EC,推出∠EDC=∠ECD,求出∠FDC=∠B,根據(jù)∠F=∠F證△FBD∽△FDC,即可;
(2)由(1)可知FBD∽△FDC,所以,由已知條件可證明△BDC∽△BCA所以
解答:(1)證明:∵CD⊥AB,
∴∠ADC=90°,
∵E是AC的中點(diǎn),
∴DE=EC,
∴∠EDC=∠ECD,
∵∠ACB=90°,∠BDC=90°
∴∠ECD+∠DCB=90°,∠DCB+∠B=90°,
∴∠ECD=∠B,
∴∠FDC=∠B,
∵∠F=∠F,
∴△FBD∽△FDC;

(2)∵△FBD∽△FDC,
,
∵△BDC∽△BCA,
,

點(diǎn)評(píng):本題考查了相似三角形的判定和性質(zhì)以及直角三角形斜邊上的中線等于斜邊的一半,解題的關(guān)鍵是由相似得到比例式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,則tanA的值為( 。
A、2
B、
1
2
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•驛城區(qū)模擬)如圖,已知在Rt△ABC中,∠B=90°,D、E分別是邊AB、AC的中點(diǎn),若DE=4,AC=10,則AB的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,內(nèi)切圓的半徑為3cm,外接圓的半徑為12.5cm,求△ABC的三邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,∠C=90°,點(diǎn)D在BC上,AD=BD,sin∠ADC=
45
,AC=4,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在Rt△ABC中,∠C=90°.根據(jù)要求用尺規(guī)作圖:
(1)作斜邊AB的垂直平分線PQ,垂足為Q;
(2)作∠B的角平分線BM.

查看答案和解析>>

同步練習(xí)冊(cè)答案