作业宝如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,折痕為FG,且BG=10.
求證:四邊形BGEF為菱形,并求出折痕GF的長(zhǎng).

證明:∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠EFG=∠BGF,
∵圖形翻折后點(diǎn)B與點(diǎn)E重合,GF為折線,
∴∠BGF=∠EGF,
∴∠EFG=∠EGF,
∴EF=GE,
∵圖形翻折后BG與GE完全重合,
∴BG=GE,
∴EF=BG,
∴四邊形BGEF為平行四邊形,
∴四邊形BGEF為菱形;
過(guò)點(diǎn)F作FK⊥BG于K,
∴四邊形ABKF是矩形,
∴FK=AB=8,BK=AF,
在Rt△ABF中,AB=8,∠A=90°,BF=BG=10,
∴AF==6,
∴GK=BG-BK=10-6=4,
∴FG==4
分析:由四邊形ABCD是矩形,根據(jù)折疊的性質(zhì),易證得△EFG是等腰三角形,即可得EF=BG,又由EF∥BG,即可得四邊形BGEF為平行四邊形,根據(jù)鄰邊相等的平行四邊形是菱形,即可得四邊形BGEF為菱形;
過(guò)點(diǎn)F作FK⊥BG于K,可得四邊形ABKF是矩形,然后根據(jù)勾股定理,即可求得AF的長(zhǎng),繼而求得FG的長(zhǎng).
點(diǎn)評(píng):此題考查了折疊的性質(zhì),平行四邊形的判定與性質(zhì),菱形的判定,矩形的性質(zhì),以及勾股定理等知識(shí).此題綜合性較強(qiáng),難度適中,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說(shuō)明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱(chēng)變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽(yáng))如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開(kāi),解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊(cè)答案