請畫出將四邊形ABDC進行平移后,使A到E處的四邊形EFGH.

解:

分析:連接AE,過B、C、D分別做AE的平行線,并且在平行線上截取BF=CH=DG=AE,順次連接平移后的各點,得到的四邊形即為平移后的四邊形EFGH.
點評:圖形的平移要歸結(jié)為各頂點的平移;
平移作圖的一般步驟為:
①確定平移的方向和距離,先確定一組對應(yīng)點;
②確定圖形中的關(guān)鍵點;
③利用第一組對應(yīng)點和平移的性質(zhì)確定圖中所有關(guān)鍵點的對應(yīng)點;
④按原圖形順序依次連接對應(yīng)點,所得到的圖形即為平移后的圖形.
用到的知識點為:平移前后的圖形的對應(yīng)點的連線平行且相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖:四邊形ABCD中AB=DC,AD=BC,點E、F在線段BD上,且BE=DF.(1)求證:△ABD≌△CDB; 
(2)指出線段AE與CF的關(guān)系,并說明理由.
(3)若將題中的條件“點E、F在線段BD上”改為“點E、F在直線BD上”那么你在(2)中得出的結(jié)論還一定能成立嗎?若能,直接寫出結(jié)論;若不能,請畫出一個圖形作為反例說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆四川省德陽中學(xué)九年級第一次月考數(shù)學(xué)試卷(帶解析) 題型:填空題

操作探究:
(1)現(xiàn)有一塊等腰三角形紙板,量得周長為32cm,底比一腰多2cm.若把這個三角形紙板沿其對稱軸剪開,拼成一個四邊形,請畫出你能拼成的各種四邊形的示意圖

(2)計算拼成的各個四邊形的兩條對角線長的和.

(3)另用紙片制作一個直角邊為4的等腰Rt△OPQ,將(1)中的剪得的Rt△ABD紙片的直角頂點D和PQ的中點M重合(如圖所示),以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)Rt△ABD紙片,Rt△ABD紙片的兩直角邊與⊿POQ的兩直角邊分別交于點E、F. 連接EF,探究:在旋轉(zhuǎn)三角形紙板的過程中,△EOF的周長是否存在最小值,若存在,求出最小值,若不存在。請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年四川省九年級第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

操作探究:

(1)現(xiàn)有一塊等腰三角形紙板,量得周長為32cm,底比一腰多2cm.若把這個三角形紙板沿其對稱軸剪開,拼成一個四邊形,請畫出你能拼成的各種四邊形的示意圖

(2)計算拼成的各個四邊形的兩條對角線長的和.

(3)另用紙片制作一個直角邊為4的等腰Rt△OPQ,將(1)中的剪得的Rt△ABD紙片的直角頂點D和PQ的中點M重合(如圖所示),以M為旋轉(zhuǎn)中心,旋轉(zhuǎn)Rt△ABD紙片,Rt△ABD紙片的兩直角邊與⊿POQ的兩直角邊分別交于點E、F. 連接EF,探究:在旋轉(zhuǎn)三角形紙板的過程中,△EOF的周長是否存在最小值,若存在,求出最小值,若不存在。請說明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,格點△ABD在矩形網(wǎng)格中,邊BD在直線l上.
(1)請畫出△ABD關(guān)于直線l對稱的△CBD;
(2)將四邊形ABCD平移得到四邊形A1B1C1D1,點A的對應(yīng)點A1的位置如圖所示,請畫出平移后的四邊形A1B1C1D1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作業(yè)寶如圖:四邊形ABCD中AB=DC,AD=BC,點E、F在線段BD上,且BE=DF

(1)求證:△ABD≌△CDB; 
(2)指出線段AE與CF的關(guān)系,并說明理由.
(3)若將題中的條件“點E、F在線段BD上”改為“點E、F在直線BD上”那么你在(2)中得出的結(jié)論還一定能成立嗎?若能,直接寫出結(jié)論;若不能,請畫出一個圖形作為反例說明.

查看答案和解析>>

同步練習(xí)冊答案