證明:(1)∵AD為⊙O的直徑,
∴∠ACD=90°,
又∵∠A=30°,OA=OC=OD,
∴∠ACO=30°,∠ODC=∠OCD=60°,-----------------------------
又∵BC與⊙o切于C,
∴∠OCB=90°,------------------------------------------
∴∠BCD=30°,
∴∠B=30°,
∴∠BCD=∠B,
∴BD=CD.--------------------------------------------
(2)∵∠A=∠ACO=∠BCD=∠B=30°,----------------------------
∴AC=BC,-----------------------------------------------
在△AOC和△BDC中,
∴△AOC≌△BDC(ASA).--------------------------------------------------------
分析:(1)由AD為⊙O的直徑,根據(jù)直徑對(duì)的圓周角是直角,即可得∠ACD=90°,又由∠A=30°,OA=OC=OD,利用等邊對(duì)等角與三角形外角的性質(zhì),即可求得∠ACO=30°,∠ODC=∠OCD=60°,又由BC與⊙O切于C點(diǎn),根據(jù)切線的性質(zhì),即可求得∠B=∠BCD=30°,由等角對(duì)等邊,即可證得BD=CD;
(2)由(1)可知∠A=∠ACO=∠BCD=∠B=30°,即可得AC=BC,然后由ASA,即可證得△AOC≌△CDB.
點(diǎn)評(píng):此題考查了切線的性質(zhì)、等腰三角形的判定與性質(zhì)以及全等三角形的判定.此題難度適中,注意數(shù)形結(jié)合思想的應(yīng)用.