【題目】如圖1,在平面直角坐標系,O為坐標原點,點A(﹣1,0),點B(0,).

(1)求BAO的度數(shù);

(2)如圖1,將AOB繞點O順時針得A′OB′,當A′恰好落在AB邊上時,設AB′O的面積為S1BA′O的面積為S2,S1與S2有何關(guān)系?為什么?

(3)若將AOB繞點O順時針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

【答案】(1) BAO=60°;(2) S1=S2;(3) S1=S2不發(fā)生變化;理由見解析.

【解析】

試題分析:(1)先求出OA,OB,再利用銳角三角函數(shù)即可得出結(jié)論;

(2)根據(jù)等邊三角形的性質(zhì)可得AO=AA',再根據(jù)直角三角形30°角所對的直角邊等斜邊的一半求出AO=AB,然后求出AO=AA,,然后再根據(jù)等邊三角形的性質(zhì)求出點O到AB的距離等于點A'到AO的距離,然后根據(jù)等底等高的三角形的面積相等解答;

(3)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BO=OB',AA'=OA',再求出AON=A'OM,然后再證明ΔAON≌ΔA'OM,可得AN=A'M,然后利用等底等高的三角形面積相等證明.

試題解析:(1)A(﹣1,0),B(0, ),

OA=1,OB=,

在RtAOB中,tanBAO==,

∴∠BAO=60°;

(2)∵∠BAO=60°,AOB=90°,

∴∠ABO=30°,

CA'=AC=AB,

OA'=AA'=AO,

根據(jù)等邊三角形的性質(zhì)可得,AOA'的邊AO、AA'上的高相等,

∴△BA'O的面積和AB'O的面積相等(等底等高的三角形的面積相等),

即S1=S2.

(3)S1=S2不發(fā)生變化;

理由:如圖,過點'作A'MOB.過點A作ANOB'交B'O的延長線于N,

∵△A'B'O是由ABO繞點O旋轉(zhuǎn)得到,

BO=OB',AO=OA',

∵∠AON+BON=90°,A'OM+BON=180°﹣90°=90°,

∴∠AON=A'OM,

AON和A'OM中,

,

∴△AON≌△A'OM(AAS),

AN=A'M,

∴△BOA'的面積和AB'O的面積相等(等底等高的三角形的面積相等),

即S1=S2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我們常用的數(shù)是十進制數(shù),計算機程序使用的是二進制數(shù)(只有數(shù)碼01),它們兩者之間可以互相換算,如將(1012,(10112換算成十進制數(shù)分別是(10121×22+0×21+14+0+15,(101121×23+0×22+1×21+11l.按此方式,將二進制(101102換算成十進制數(shù)的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有下列說法:
①有一個角為60°的等腰三角形是等邊三角形;
②三邊長為 、 、3的三角形為直角三角形;
③等腰三角形的兩邊長為3、4,則等腰三角形的周長為10;
④一邊上的中線等于這邊長的一半的三角形是等腰直角三角形.
其中正確的個數(shù)是( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列多項式分解因式

(1)12xy2-3x3;

(2)(x-2)(x-4)+1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數(shù)不超過20時,每頁收費0.12元;一次復印頁數(shù)超過20時,超過部分每頁收費0.09元.

設在同一家復印店一次復印文件的頁數(shù)為為非負整數(shù)).

(1)根據(jù)題意,填寫下表:

一次復印頁數(shù)(頁)

5

10

20

30

甲復印店收費(元)

2

乙復印店收費(元)

(2)設在甲復印店復印收費元,在乙復印店復印收費元,分別寫出關(guān)于的函數(shù)關(guān)系式;

(3)當時,顧客在哪家復印店復印花費少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=30°,∠AOB內(nèi)有一定點P,且OP=10.在OA上有一點Q,OB上有一點R.若△PQR周長最小,則最小周長是(  )

A.10
B.15
C.20
D.30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坐標平面上,△ABC≌△DEF全等,其中A、B、C的對應頂點分別為D、E、F,且AB=BC,若A、B、C的坐標分別為(﹣3,1)、(﹣6,﹣3)、(﹣1,﹣3),D、E兩點在y軸上,則F點到y(tǒng)軸的距離為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的直角邊上一點,以為半徑的與斜邊相切于點,交于點.已知

(1)求的長;

(2)求圖中陰影部分的面積.

查看答案和解析>>

同步練習冊答案