如圖,在Rt△ABC中,∠C=90°,AC=4,將△ABC沿CB向右平移得到△DEF,若平移距離為2,則四邊形ABED的面積等于 .
【考點(diǎn)】平移的性質(zhì);平行四邊形的判定與性質(zhì).
【專題】
【分析】根據(jù)平移的性質(zhì),經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,可得四邊形ABED是平行四邊形,再根據(jù)平行四邊形的面積公式即可求解.
【解答】解:∵將△ABC沿CB向右平移得到△DEF,平移距離為2,
∴AD∥BE,AD=BE=2,
∴四邊形ABED是平行四邊形,
∴四邊形ABED的面積=BE×AC=2×4=8.
故答案為8.
【點(diǎn)評(píng)】本題主要考查平移的基本性質(zhì):①平移不改變圖形的形狀和大;②經(jīng)過平移,對(duì)應(yīng)點(diǎn)所連的線段平行且相等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com