已知,△ABC和△DEF是相似三角形,其中△ABC的兩個(gè)內(nèi)角分別為50°和60°,則△DEF的最大內(nèi)角等于
70°
70°
分析:首先求得△ABC的第三個(gè)角的度數(shù),根據(jù)相似三角形的對(duì)應(yīng)角相等即可判斷.
解答:解:△ABC的兩個(gè)內(nèi)角分別為50°和60°,則第三個(gè)角的度數(shù)是180°-50°-60°=70°.
則△DEF的最大內(nèi)角等于 70°.
故答案是:70°.
點(diǎn)評(píng):本題考查了相似三角形的性質(zhì):對(duì)應(yīng)角相等,理解性質(zhì)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)M是BE的中點(diǎn),連接CM.當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時(shí)(如圖一),連接DM,可得結(jié)論:DC=
2
CM.將△ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)D在AC上(如圖二)或當(dāng)點(diǎn)E在BA的延長(zhǎng)線上(如圖三)時(shí),請(qǐng)你猜想DC與CM有怎樣的數(shù)量關(guān)系,并選擇一種情況加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:△ABC和△DBE均為等腰直角三角形.如圖(1),易證AD=CE且AD⊥CE.
(1)將△DBE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖(2)的位置時(shí),線段AD和CE有怎樣的關(guān)系?
(2)將△DBE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至圖(3)的位置時(shí),線段AD和CE又有怎樣的關(guān)系?
請(qǐng)直接寫(xiě)出你的猜想,并選擇其一加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,△ABC和△CDE都是等邊三角形,且點(diǎn)B,C,D在同一條直線上.求證:BE=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(1),已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)說(shuō)明△ABC≌△FED的理由;
(2)若圖形經(jīng)過(guò)平移和旋轉(zhuǎn)后得到圖(2),且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖(3),此時(shí)D、B、F三點(diǎn)在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為4cm2,那么四邊形ABED的面積=
12
12
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、已知,△ABC和△A'B'C'中,∠C=∠C'=90°,AC=A'C',要判定△ABC≌△A'B'C'可以添加條件
AB=A′B′
∠A=∠A′
∠B=∠B′
BC=B′C′

查看答案和解析>>

同步練習(xí)冊(cè)答案