如圖,四邊形ABCD是圓內接四邊形,∠BAD=108°,E是BC延長線上一點,若CF平分∠DCE,則∠DCF的大小是( )

A.52°
B.54°
C.56°
D.60°
【答案】分析:由“圓內接四邊形的任意一個外角等于它的內對角”知∠DCE=∠BAD=108°,然后根據(jù)角平分線的定義來求∠DCF的大小.
解答:解:∵四邊形ABCD是圓內接四邊形,∠BAD=108°,E是BC延長線上一點,
∴∠DCE=∠BAD=108°.
∵CF平分∠DCE,
∴∠DCF=∠DCE=54°.
故選B.
點評:本題考查了圓內接四邊形的性質.圓內接四邊形的性質是溝通角相等關系的重要依據(jù),在應用此性質時,要注意與圓周角定理結合起來.在應用時要注意是對角,而不是鄰角互補.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設AC=2a,BD=2b,請推導這個四邊形的性質.(至少3條)
(提示:平面圖形的性質通常從它的邊、內角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案