(2009•綦江縣)如圖,直線EF分別與直線AB,CD相交于點(diǎn)G、H,已知∠1=∠2=50°,GM平分∠HGB交直線CD于點(diǎn)M.則∠3=( )

A.60°
B.65°
C.70°
D.130°
【答案】分析:根據(jù)鄰補(bǔ)角的性質(zhì)與∠1=50°,求得∠BGH=180°-50°=130°,由GM平分∠HGB交直線CD于點(diǎn)M,得出∠BGM的度數(shù),根據(jù)同位角相等,兩直線平行,得到AB∥CD,從而利用平行線的性質(zhì)求得∠3的度數(shù).
解答:解:∵∠1=50°,
∴∠BGH=180°-50°=130°,
∵GM平分∠HGB,
∴∠BGM=65°,
∵∠1=∠2,
∴AB∥CD(同位角相等,兩直線平行),
∴∠3=∠BGM=65°(兩直線平行,內(nèi)錯(cuò)角相等).
故選B.
點(diǎn)評:本題主要考查了平行線的性質(zhì),兩直線平行,內(nèi)錯(cuò)角相等;以及平行線的判定方法,同位角相等,兩直線平行.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷34(義蓬二中 戎曉軍)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(31)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷48(新灣初中 洪凱)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年新人教版中考數(shù)學(xué)模擬試卷(10)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市浠水縣余堰中學(xué)九年級數(shù)學(xué)月考試卷(二)(解析版) 題型:解答題

(2009•綦江縣)如圖,已知拋物線y=a(x-1)2+3(a≠0)經(jīng)過點(diǎn)A(-2,0),拋物線的頂點(diǎn)為D,過O作射線OM∥AD.過頂點(diǎn)平行于x軸的直線交射線OM于點(diǎn)C,B在x軸正半軸上,連接BC.
(1)求該拋物線的解析式;
(2)若動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)長度單位的速度沿射線OM運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).問當(dāng)t為何值時(shí),四邊形DAOP分別為平行四邊形,直角梯形,等腰梯形?
(3)若OC=OB,動(dòng)點(diǎn)P和動(dòng)點(diǎn)Q分別從點(diǎn)O和點(diǎn)B同時(shí)出發(fā),分別以每秒1個(gè)長度單位和2個(gè)長度單位的速度沿OC和BO運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)它們的運(yùn)動(dòng)的時(shí)間為t(s),連接PQ,當(dāng)t為何值時(shí),四邊形BCPQ的面積最?并求出最小值及此時(shí)PQ的長.

查看答案和解析>>

同步練習(xí)冊答案