計算題:
(1)99×101 (公式法)
(2)(4x2y+5xy-7y)-(5x2y-4xy+x)
(3)(x-2y)2+4(x-y)(x+y);
(4)(a+2b-c)(a+2b+c)
(5)(2x3y4z2+4x3y3z3-6x2y3z5)÷(2x2yz2)
(6)(x+3y)(x-2y)-x3÷x+6y2,其中x=2,y=-3
解:(1)原式=(100-1)(100+1),
=1002-1,
=10000-1,
=9999;
(2)(4x2y+5xy-7y)-(5x2y-4xy+x),
=4x2y+5xy-7y-5x2y+4xy-x,
=(4-5)x2y+(5+4)xy-7y-x,
=-x2y+9xy-7y-x;
(3)(x-2y)2+4(x-y)(x+y),
=x2-4xy+4y2+4x2-4y2,
=5x2-4xy;
(4)設(shè):a+2b=m,
則原式(a+2b-c)(a+2b+c)=(m-c)(m+c),
=m2-c2,
∵a+2b=m,
∴m2-c2=(a+2b)2-c2,
=a2+4ab+4b2-c2;
(5)(2x3y4z2+4x3y3z3-6x2y3z5)÷(2x2yz2),
=2x3y4z2÷2x2yz2+4x3y3z3÷2x2yz2-6x2y3z5÷2x2yz2,
=xy3+2xy2z-3y2z3;
(6)(x+3y)(x-2y)-x3÷x+6y2,
=x2+xy-6y2-x2+6y2,
=xy,
當x=2,y=-3時,
原式=2×(-3)=-6
分析:(1)運用平方差公式進行計算;
(2)去括號,合并同類項;
(3)直接運用乘法的分配律計算;
(4)可以運用換元法和平方差公式進行計算.
(5)整式的除法,系數(shù)相除,相同字母的指數(shù)相減.
點評:本題考查的是有理數(shù)的運算能力.注意:
(1)要正確掌握運算順序,在混合運算中要特別注意運算順序:先三級,后二級,再一級;有括號的先算括號里面的;同級運算按從左到右的順序;
(2)去括號法則:--得+,-+得-,++得+,+-得-.
(3)整式中如果有多重括號應按照先去小括號,再去中括號,最后大括號的順序進行.