【題目】如圖1,⊙O的半徑為r(r>0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于⊙O的“反演點(diǎn)”.
如圖2,⊙O的半徑為4,點(diǎn)B在⊙O上,∠BOA=60°,OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于⊙O的反演點(diǎn),求A′B′的長.
【答案】
【解析】
試題分析:設(shè)OA交⊙O于C,連結(jié)B′C,如圖2,根據(jù)新定義計算出OA′=2,OB′=4,則點(diǎn)A′為OC的中點(diǎn),點(diǎn)B和B′重合,再證明△OBC為等邊三角形,則B′A′⊥OC,然后在Rt△OA′B′中,利用正弦的定義可求A′B′的長.
試題解析:設(shè)OA交⊙O于C,連結(jié)B′C,如圖2,
∵OA′OA=42,
而r=4,OA=8,
∴OA′=2,
∵OB′OB=42,
∴OB′=4,即點(diǎn)B和B′重合,
∵∠BOA=60°,OB=OC,
∴△OBC為等邊三角形,
而點(diǎn)A′為OC的中點(diǎn),
∴B′A′⊥OC,
在Rt△OA′B′中,sin∠A′OB′=,
∴A′B′=4sin60°=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界文化遺產(chǎn)長城總長約6700000m,6700000用科學(xué)記數(shù)法可表示為( )
A.6.7×105B.67×105C.6.7×106D.67×106
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,以下各層均比上一層多一個圓圈,一共堆了n層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以算出圖1中所有圓圈的個數(shù)為1+2+3+…+n= .
如果圖中的圓圈共有11層,請問:自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,…,則最底層中間這個圓圈中的數(shù)是;自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)
﹣23,﹣22,﹣21,﹣20,…,則所有圓圈中各數(shù)之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b(a>0)與x軸的交點(diǎn)坐標(biāo)為(m,0),則一元一次不等式ax+b≤0的解集應(yīng)為( 。
A. x≤m B. x≤-m C. x≥m D. x≥-m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,A,E,F(xiàn),C在一條直線上,AE=CF,過點(diǎn)E,F(xiàn)分別作DE⊥AC,BF⊥AC,且AB=CD.
(1)求證:BD平分EF.
(2)若將△DEC的邊EC沿AC方向移動變?yōu)閳D②,其余的條件不變,上述結(jié)論是否仍成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下內(nèi)容,并回答問題:
若一個三角形的兩邊平方和等于第三邊平方的兩倍,我們稱這樣的三角形為奇異三角形.
(1)命題“等邊三角形一定是奇異三角形”是 命題(填“真”或“假”);
(2)在△ABC中,已知∠C=90°,△ABC的內(nèi)角∠A、∠B、∠C所對邊的長分別為a、b、c,且b>a,若Rt△ABC是奇異三角形,求a:b:c;
(3)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn)(點(diǎn)C與點(diǎn)A、B不重合),D是半圓的中點(diǎn),C、D在直徑AB的兩側(cè),若存在點(diǎn)E,使AE=AD,CB=CE.求證:△ACE是奇異三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)P在弧AB上(不含點(diǎn)A、B),把△AOP沿OP對折,點(diǎn)A的對應(yīng)點(diǎn)C恰好落在⊙O上.
(1)當(dāng)P、C都在AB上方時(如圖1),判斷PO與BC的位置關(guān)系(只回答結(jié)果);
(2)當(dāng)P在AB上方而C在AB下方時(如圖2),(1)中結(jié)論還成立嗎?證明你的結(jié)論;
(3)當(dāng)P、C都在AB上方時(如圖3),過C點(diǎn)作CD⊥直線AP于D,且CD是⊙O的切線,證明:AB=4PD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB分別與⊙O相切于A,B兩點(diǎn),∠ACB=60°.
(1)求∠P的度數(shù);
(2)若⊙O的半徑長為4cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:
如圖1,△ABC中,∠A=90°,∠B=30°,點(diǎn)D,E分別在AB,BC上,且∠CDE=90°.當(dāng)BE=2AD時,圖1中是否存在與CD相等的線段?若存在,請找出并加以證明,若不存在,說明理由.
小明通過探究發(fā)現(xiàn),過點(diǎn)E作AB的垂線EF,垂足為F,能得到一對全等三角形(如圖2),從而將解決問題.
請回答:
(1)小明發(fā)現(xiàn)的與CD相等的線段是 .
(2)證明小明發(fā)現(xiàn)的結(jié)論;
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在BC上,BD=2DC,點(diǎn)E在AD上,且∠BEC=135°,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com