【題目】正方形ABCD中,E點為BC中點,連接AE,過B點作BF⊥AE,交CD于F點,交AE于G點,
連接GD,過A點作AH⊥GD交GD于H點.
(1)求證:△ABE≌△BCF;
(2)若正方形邊長為4,AH=,求△AGD的面積.
【答案】(1)、答案見解析;(2)、
【解析】
試題分析:(1)、根據(jù)正方形的性質(zhì)得出∠1+∠2=90°,根據(jù)AE⊥BF得出∠3+∠2=90°,從而說明∠1=∠3,根據(jù)正方形得出∠ABE=∠BCF=90°,AB=BC,從而得出三角形全等;(2)、延長BF交AD延長線于M點,根據(jù)全等得出CF=BE,根據(jù)中點的性質(zhì)得出CF=CD=FD,從而得出△BCF和△MDF全等,根據(jù)正方形的性質(zhì)得出GD和AH的長度,從而得出面積.
試題解析:(1)、正方形ABCD中,∠ABE=90°,
∴∠1+∠2=90°,
又AE⊥BF,
∴∠3+∠2=90°,
則∠1=∠3
又∵四邊形ABCD為正方形,
∴∠ABE=∠BCF=90°,AB=BC
在△ABE和△BCF中,
∴△ABE≌△BCF(ASA)
(2)、延長BF交AD延長線于M點, ∴∠MDF=90°
由(1)知△ABE≌△BCF, ∴CF=BE
∵E點是BC中點, ∴BE=BC,即CF=CD=FD,
在△BCF和△MDF中,
∴△BCF≌△MDF(ASA)
∴BC=DM,即DM=AD,D是AM中點
又AG⊥GM,即△AGM為直角三角形,
∴GD=AM=AD
又∵正方形邊長為4,
∴GD=4
S△AGD=GDAH=×4×=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)軸上的點A在原點左邊與原點距離2個單位長度,那么與A點相距3個單位長度的點所對應(yīng)的有理數(shù)為_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)實施新課程改革后,學(xué)生的自主學(xué)習(xí)、合作交流能力有很大提高,張老師為了了解所教班級學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進行了為期半個月的跟蹤調(diào)査,并將調(diào)査結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)査結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖回答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)査了 名同學(xué),其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調(diào)査的A類和D類學(xué)生中分別選取一位同學(xué)進行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣佰文化商場同時賣出兩臺電子琴,每臺均賣960元,以成本計算,其中一臺盈利20%,另一臺虧損20%,則本次出售中商場( )
A. 不賠不賺 B. 賺160元 C. 賺80元 D. 賠80元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上任意兩點確定一條直線,任意三點最多可確定3條直線,若平面上任意n個點最多可確定28條直線,則n的值是________________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x 軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x 軸于點A3;…如此進行下去,得到一條“波浪線”.若點P(35,m)在此“波浪線”上,則m的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com