精英家教網 > 初中數學 > 題目詳情
(2013•荊門)如右圖所示,已知等腰梯形ABCD,AD∥BC,若動直線l垂直于BC,且向右平移,設掃過的陰影部分的面積為S,BP為x,則S關于x的函數圖象大致是( 。
分析:分三段考慮,①當直線l經過BA段時,②直線l經過AD段時,③直線l經過DC段時,分別觀察出面積變化的情況,然后結合選項即可得出答案.
解答:解:①當直線l經過BA段時,陰影部分的面積越來越大,并且增大的速度越來越快;
②直線l經過AD段時,陰影部分的面積越來越大,并且增大的速度保持不變;
③直線l經過DC段時,陰影部分的面積越來越大,并且增大的速度越來越;
結合選項可得,A選項的圖象符合.
故選A.
點評:本題考查了動點問題的函數圖象,類似此類問題,有時候并不需要真正解出函數解析式,只要我們能判斷面積增大的快慢就能選出答案.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•荊門)如圖,在半徑為1的⊙O中,∠AOB=45°,則sinC的值為(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•荊門)如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=
3
5
,則DE=
15
4
15
4

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•荊門)如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設其它條件不變.求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•荊門)如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.
(1)求證:OF∥BE;
(2)設BP=x,AF=y,求y關于x的函數解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案