D
分析:由于△ABC和△CDE是等邊三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,從而證出△ACD≌△BCE,由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根據∠PCQ=60°推出△PCQ為等邊三角形,又由∠PQC=∠DCE,根據△CQB≌△CPA(ASA),可知CP=CQ正確;利用等邊三角形的性質,BC∥DE,再根據平行線的性質得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,再利用四點共圓得出以及圓心角定理OC平分∠AOE.
解答:∵等邊△ABC和等邊△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中
∴△ACD≌△BCE(SAS),
∴∠CBE=∠DAC,
又∵∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
在△CQB和△CPA中
∴△CQB≌△CPA(ASA),
∴CP=CQ,故④正確;
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE①正確,
∵△CQB≌△CPA,
∴AP=BQ②正確,
∵∠ACB=∠DCE=60°,
∴∠BCD=60°,
∵等邊△DCE,
∠EDC=60°=∠BCD,
∴BC∥DE,
∴∠CBE=∠DEO,
∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,
∴③正確;
連接CO,
∵∠BOA=60°,
∴∠AOE=120°,
∵∠PCQ=60°,
∴O、P、C、Q四點共圓,
∵PC=CQ,
∴∠POC=∠QOC,
∴OC平分∠AOE.
故5個選項都正確.
故選:D.
點評:本題考查了等邊三角形的性質、全等三角形的判定與性質和平行線的判定以及四點共圓等知識,熟練應用三角形全等的證明是正確解答本題的關鍵.