分析 由已知條件和勾股定理得出△ADC是等腰直角三角形,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=2$\sqrt{2}$,△ACB是等腰直角三角形,BC=AC=2$\sqrt{2}$,再由勾股定理求出AB即可.
解答 解:∵∠ACB=∠ADC=90°,AD=2,CD=2,
∴△ADC是等腰直角三角形,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=2$\sqrt{2}$,
∵△ACB與△ADC相似,
∴△ACB是等腰直角三角形,BC=AC=2$\sqrt{2}$,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=4,
即當AB的長為4時,△ACB與△ADC相似;
故答案為:4.
點評 本題考查了相似三角形的判定、等腰直角三角形的判定與性質、勾股定理;熟練掌握相似三角形的判定,由勾股定理求出AC是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
銷售單價 x(元) | 16 | 18 | 20 | 22 |
年銷售量y(萬件) | 5 | 4 | 3 | 2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$,$\sqrt{2}$,2 | B. | 9,16,25 | C. | 6,8,10 | D. | 5,12,13 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com