【題目】某商場欲購進(jìn)果汁飲料和碳酸飲料共60箱,兩種飲料每箱的進(jìn)價(jià)和售價(jià)如下表所示。設(shè)購進(jìn)果汁飲料x箱(x為正整數(shù)),且所購進(jìn)的兩種飲料能全部賣出,獲得的總利潤為W元(注:總利潤=總售價(jià)-總進(jìn)價(jià))。
(1)設(shè)商場購進(jìn)碳酸飲料y箱,直接寫出y與x的函數(shù)解析式;
(2)求總利潤w關(guān)于x的函數(shù)解析式;
(3)如果購進(jìn)兩種飲料的總費(fèi)用不超過2100元,那么該商場如何進(jìn)貨才能獲利最多?并求出最大利潤。
飲料 | 果汁飲料 | 碳酸飲料 |
進(jìn)價(jià)(元/箱) | 40 | 25 |
售價(jià)(元/箱) | 52 | 32 |
【答案】(1)y=60-x;(2)w=5x+420;(3)該商場購進(jìn)兩種飲料分別為40箱和20箱時(shí),能獲得最大利潤620元.
【解析】
(1)根據(jù)購進(jìn)果汁飲料和碳酸飲料共60箱即可求解;
(2)根據(jù)總利潤=每個(gè)的利潤數(shù)量就可以表示出w與x之間的關(guān)系式;
(3)由題意得40x+25(60-x)≤2100,解得x的值,然后可求y值,根據(jù)一次函數(shù)的性質(zhì)可以求出進(jìn)貨方案及最大利潤.
(1)y與x的函數(shù)解析式為y=60-x.
(2)總利潤w關(guān)于x的函數(shù)解析式為
w=(52-40)x+(32-25)(60-x)=5x+420.
(3)由題意得40x+25(60-x)≤2100,解得x≤40,
∵y=5x+420,y隨x的增大而增大,
∴當(dāng)x=40時(shí),y最大值=5×40+420=620(元),
此時(shí)購進(jìn)碳酸飲料60-40=20(箱).
∴該商場購進(jìn)兩種飲料分別為40箱和20箱時(shí),能獲得最大利潤620元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩邊在坐標(biāo)軸上,點(diǎn)A的坐標(biāo)為(10,0),拋物線y=ax2+bx+4過點(diǎn)B,C兩點(diǎn),且與x軸的一個(gè)交點(diǎn)為D(﹣2,0),點(diǎn)P是線段CB上的動點(diǎn),設(shè)CP=t(0<t<10).
(1)請直接寫出B、C兩點(diǎn)的坐標(biāo)及拋物線的解析式;
(2)過點(diǎn)P作PE⊥BC,交拋物線于點(diǎn)E,連接BE,當(dāng)t為何值時(shí),∠PBE=∠OCD?
(3)點(diǎn)Q是x軸上的動點(diǎn),過點(diǎn)P作PM∥BQ,交CQ于點(diǎn)M,作PN∥CQ,交BQ于點(diǎn)N,當(dāng)四邊形PMQN為正方形時(shí),請求出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的高速公路上依次有3個(gè)標(biāo)志點(diǎn)A、B、C,甲、乙兩車分別從A、C兩點(diǎn)同時(shí)出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示.觀察圖象,給出下列結(jié)論:①A、C之間的路程為690千米;②乙車比甲車每小時(shí)快30千米;③4.5小時(shí)兩車相遇;④點(diǎn)E的橫坐標(biāo)表示兩車第二次相遇的時(shí)間;⑤點(diǎn)E的坐標(biāo)為(7,180)其中正確的有________(把所有正確結(jié)論的序號都填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校學(xué)生下學(xué)期參加社區(qū)活動的情況,學(xué)校隨機(jī)調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
活動次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | m | b |
12<x≤15 | 4 | 0.08 |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中a=___,b=___;
(2)請把頻數(shù)分布直方圖補(bǔ)充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1500名學(xué)生,請估計(jì)該校在下學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點(diǎn)O,E為OC上動點(diǎn)(與點(diǎn)O不重合),作AF⊥BE,垂足為G,交BC于F,交B0于H,連接OG,CC.
(1)求證:AH=BE;
(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;
(3)若OG⊥CG,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一組按照某種規(guī)律擺放而成的圖案,其中圖1有個(gè)三角形,圖2有個(gè)三角形,圖3有個(gè)三角形,……,照此規(guī)律,則圖10中三角形的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是AC的中點(diǎn),點(diǎn)A、B在x軸上.若函數(shù)( )的圖像過D、E兩點(diǎn),則矩形ABCD的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上書寫了一個(gè)正確的演算過程,隨后用手掌捂住了一個(gè)多項(xiàng)式,形式如下:+(﹣3x2+5x﹣7)=﹣2x2+3x﹣6
(1)求所捂的多項(xiàng)式;
(2)若x是x=﹣x+3的解,求所捂多項(xiàng)式的值;
(3)若x為正整數(shù),x每取一個(gè)值,都可以求出所捂多項(xiàng)式的值,請你任取x的幾個(gè)值(不要寫在答題紙上),發(fā)現(xiàn)它們之間有一定的規(guī)律,請用含x的式子表示這一結(jié)論:____________=_____________;
(4)若所捂多項(xiàng)式的值為729,請直接寫出x的取值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com