【題目】如圖,BD是△ABC的角平分線,過(guò)點(diǎn)D作DE∥BC交AB于點(diǎn)E, DF∥AB交BC于點(diǎn)F .
(1)求證:四邊形BEDF是菱形
(2)如果∠A=80°,∠C=30°,求∠BDE的度數(shù).
【答案】(1)見詳解;(2)35°
【解析】
(1)由題意可證BE=DE,四邊形BEDF是平行四邊形,即可證四邊形BEDF為菱形;
(2)由三角形內(nèi)角和定理求出∠ABC=70°,由菱形的性質(zhì)即可得出答案.
(1)證明:∵DE∥BC,DF∥AB,
∴四邊形DEBF是平行四邊形,
∵DE∥BC,
∴∠EDB=∠DBF,
∵BD平分∠ABC,
∴∠ABD=∠DBF=∠ABC
∴∠ABD=∠EDB
∴DE=BE且四邊形BEDF為平行四邊形
∴四邊形BEDF為菱形;
(2)解:∵∠A=80°,∠C=30°,
∴∠ABC=180°-80°-30°=70°,
∵四邊形BEDF為菱形,
∴∠EDF=∠ABC=70°,∠BDE=∠EDF=35°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的對(duì)角線所成的角之一是65°,則對(duì)角線與各邊所成的角度是( )
A. 57.5° B. 32.5° C. 57.5°,23.5° D. 57.5°,32.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=13米,坡比DE:EC=1: ,高為DE,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為64°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度;(參考數(shù)據(jù):sin64°≈0.9,tan64°≈2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正確結(jié)論的選項(xiàng)是( 。
A. ①③ B. ①③④ C. ②④⑤ D. ①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,平行四邊形ABCD和平行四邊形CDEF有公共邊CD,邊AB和EF在同一條直線上,AC⊥CD且AC=AF,過(guò)點(diǎn)A作AH⊥BC交CF于點(diǎn)G,交BC于點(diǎn)H,連接EG.
(1)若AE=2,CD=5,則△BCF的面積為 ;△BCF的周長(zhǎng)為 ;
(2)求證:BC=AG+EG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉淇準(zhǔn)備完成題目:化簡(jiǎn):,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請(qǐng)你化簡(jiǎn):(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說(shuō):“你猜錯(cuò)了,我看到該題標(biāo)準(zhǔn)答案的結(jié)果是常數(shù).”通過(guò)計(jì)算說(shuō)明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B兩點(diǎn)在數(shù)軸上,點(diǎn)A在原點(diǎn)O的左邊,表示的數(shù)為﹣10,點(diǎn)B在原點(diǎn)的右邊,且BO=3AO.點(diǎn)M以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)A出發(fā)向右運(yùn)動(dòng).點(diǎn)N以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)O出發(fā)向右運(yùn)動(dòng)(點(diǎn)M,點(diǎn)N同時(shí)出發(fā)).
(1)數(shù)軸上點(diǎn)B對(duì)應(yīng)的數(shù)是 ,點(diǎn)B到點(diǎn)A的距離是 ;
(2)經(jīng)過(guò)幾秒,原點(diǎn)O是線段MN的中點(diǎn)?
(3)經(jīng)過(guò)幾秒,點(diǎn)M,N分別到點(diǎn)B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=- x2+bx+c與x軸交于點(diǎn)A(-1,0)和B,與y軸交于點(diǎn)C(0,3).
(1)求此拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)設(shè)拋物線的頂點(diǎn)為D,連接CD、DB、CB、AC.
①求證:△AOC∽△DCB;②在坐標(biāo)軸上是否存在與原點(diǎn)O不重合的點(diǎn)P,使以P、A、C為頂點(diǎn)的三角形與△DCB相似?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com