【題目】如圖,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折疊,使邊AB與AC重合,點(diǎn)B落在AC邊上的B′處,則折痕AP的長等于

【答案】3
【解析】解:∵AB=6,BC=8,AC=10,
∴AB2+BC2=AC2 ,
∴∠B=90°
∵△APB′是由APB翻折,
∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°設(shè)PB=PB′=x,
在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,
∴x2+42=(8﹣x)2
∴x=3,
∴AP= = =3
所以答案是3

【考點(diǎn)精析】根據(jù)題目的已知條件,利用翻折變換(折疊問題)的相關(guān)知識可以得到問題的答案,需要掌握折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯誤的是( )

A. 5是25的平方根 B. 125的立方根是±5

C. -0.125的立方根是-0.5 D. (-5)3的立方根是-5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點(diǎn)MDE的中點(diǎn).過點(diǎn)EAD平行的直線交射線AM于點(diǎn)N

(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:MAN的中點(diǎn);

(2)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點(diǎn)B旋轉(zhuǎn)到圖3的位置時(shí),(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(2,﹣3)先向左平移4個(gè)單位長度,再向上平移1個(gè)單位長度,得到點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用下列圖形不能進(jìn)行平面鑲嵌的是(

A. 正三角形和正四邊形 B. 正三角形和正六邊形

C. 正四邊形和正八邊形 D. 正四邊形和正十二邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:①棱柱的上、下底面的形狀相同;②相等的角是對頂角;③若AB=BC,則點(diǎn)B為線段AC的中點(diǎn);④直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

其中正確說法的個(gè)數(shù)有 ( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )
A.x2+x2=x4
B.x2+x3=2x5
C.3x﹣2x=1
D.x2y﹣2x2y=﹣x2y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)等式和不等式的性質(zhì),可以得到:若a﹣b>0,則a>b;若a﹣b=0,則a=b;若a﹣b<0,則a<b.這是利用“作差法”比較兩個(gè)數(shù)或兩個(gè)代數(shù)式值的大。
(1)試比較代數(shù)式5m2﹣4m+2與4m2﹣4m﹣7的值之間的大小關(guān)系;
(2)已知A=5m2﹣4( m﹣ ),B=7(m2﹣m)+3,請你運(yùn)用前面介紹的方法比較代數(shù)式A與B的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個(gè)邊長為b的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙).那么通過計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

同步練習(xí)冊答案