(2010•東陽市)如圖,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)請你判斷AD是△ABC的中線還是角平分線?請證明你的結(jié)論;
(2)連接BF、CE,若四邊形BFCE是菱形,則△ABC中應(yīng)添加一個條件______.

【答案】分析:(1)先證明△BDE≌△CFD,得出BD=CD,可以判斷AD是△ABC的中線;
(2)要使四邊形BFCE是菱形,由BC與EF互相平分,只要BC與EF互相垂直即可,則添加的條件為∠ABC=∠ACB或AD⊥BC或AD平分∠BAC.答案不唯一.
解答:解:(1)AD是△ABC的中線.(1分)
理由如下:∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°(1分)
又∵BE=CF,∠BDE=∠CDF,
∴△BDE≌△CFD(AAS).(2分)
∴BD=CD,即AD為△ABC的中線;

(2)∵四邊形BFCE,AB=CD或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC(2分)答案不唯一.
點評:考查了全等三角形的判定和菱形的性質(zhì).需要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年北京市解密預(yù)測中考模擬試卷02(解析版) 題型:解答題

(2010•東陽市模擬)已知拋物線y=-x2+bx+c經(jīng)過點A(0,4),且拋物線的對稱軸為直線x=2.
(1)求該拋物線的解析式;
(2)若該拋物線的頂點為B,在拋物線上是否存在點C,使得A、B、O、C四點構(gòu)成的四邊形為梯形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由;
(3)試問在拋物線上是否存在著點P,使得以3為半徑的⊙P既與x軸相切,又與對稱軸相交?若存在,請求出點P的坐標(biāo),并求出對稱軸被⊙P所截得的弦EF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省金華市東陽市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:解答題

(2010•東陽市模擬)已知拋物線y=-x2+bx+c經(jīng)過點A(0,4),且拋物線的對稱軸為直線x=2.
(1)求該拋物線的解析式;
(2)若該拋物線的頂點為B,在拋物線上是否存在點C,使得A、B、O、C四點構(gòu)成的四邊形為梯形?若存在,請求出點C的坐標(biāo);若不存在,請說明理由;
(3)試問在拋物線上是否存在著點P,使得以3為半徑的⊙P既與x軸相切,又與對稱軸相交?若存在,請求出點P的坐標(biāo),并求出對稱軸被⊙P所截得的弦EF的長度;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省蘇州市吳中區(qū)臨湖一中中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年浙江省嘉興市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•東陽市)某反比例函數(shù)的圖象經(jīng)過點(-2,3),則此函數(shù)圖象也經(jīng)過點( )
A.(2,-3)
B.(-3,-3)
C.(2,3)
D.(-4,6)

查看答案和解析>>

同步練習(xí)冊答案