【題目】小明同學在學習了全等三角形的相關知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是(  )

A. 角的內部到角的兩邊的距離相等的點在角的平分線上

B. 角平分線上的點到這個角兩邊的距離相等

C. 三角形三條角平分線的交點到三條邊的距離相等

D. 以上均不正確

【答案】A

【解析】

過兩把直尺的交點CCF⊥BO與點F,由題意得CE⊥AO,因為是兩把完全相同的長方形直尺,可得CE=CF,再根據(jù)角的內部到角的兩邊的距離相等的點在這個角的平分線上可得OP平分∠AOB

如圖所示:過兩把直尺的交點CCF⊥BO與點F,由題意得CE⊥AO,

∵兩把完全相同的長方形直尺,

∴CE=CF,

∴OP平分∠AOB(角的內部到角的兩邊的距離相等的點在這個角的平分線上),

故選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A、B兩點,與y軸交于點C,點A的坐標為(4,0),且當x=﹣2和x=5時二次函數(shù)的函數(shù)值y相等.

(1)求實數(shù)a、b的值;
(2)如圖1,動點E、F同時從A點出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒 個單位長度的速度沿射線AC方向運動.當點E停止運動時,點F隨之停止運動.設運動時間為t秒.連接EF,將△AEF沿EF翻折,使點A落在點D處,得到△DEF.
①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由.
②設△DEF與△ABC重疊部分的面積為S,求S關于t的函數(shù)關系式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°BE,DF分別是∠ABC,ADC的平分線.

11與∠2有什么關系,為什么?

2BEDF有什么關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,點A坐標為(0,1),點B坐標為(0,﹣2),反比例函數(shù)y= 的圖象經過點C,一次函數(shù)y=ax+b的圖象經過A,C兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)若點P是反比例函數(shù)圖象上的一點,△OAP的面積恰好等于正方形ABCD的面積,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明要測量河內小島B到河邊公路AD的距離,在A點測得∠BAD=30°,在C點測得∠BCD=60°,又測得AC=50米,求小島B到公路AD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個批發(fā)商銷售成本為20元/千克的某產品,根據(jù)物價部門規(guī)定:該產品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關系,對應關系如下表:

售價x(元/千克)

50

60

70

80

銷售量y(千克)

100

90

80

70


(1)求y與x的函數(shù)關系式;
(2)該批發(fā)商若想獲得4000元的利潤,應將售價定為多少元?
(3)該產品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=2x與反比例函數(shù)y= (k≠0,x>0)的圖象交于點A(1,a),B是反比例函數(shù)圖象上一點,直線OB與x軸的夾角為α,tanα=

(1)求k的值.
(2)求點B的坐標.
(3)設點P(m,0),使△PAB的面積為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.求證:

(1)△ABC∽△POM;
(2)2OA2=OPBC.

查看答案和解析>>

同步練習冊答案