精英家教網 > 初中數學 > 題目詳情
已知二次函數中,函數y與x的部分對應值如下:

...
-1
0
1
2
3
...

...[
10
5
2
1
2[
...
 
則當時,x的取值范圍是       .
.

試題分析:由已知對應值,知二次函數的對稱軸是x=1,補充表格如下:
x
...
-1
0
1
2
3
4
5
...
y
...
10
5
2
1
2[
5
10
...
∴當時,x的取值范圍是.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2 + bx + c 交x軸于A、B兩點,交y軸于點C,對稱軸為直線x=1,已知:A(-1,0)、C(0,-3)。
(1)求拋物線y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面積比;
(3)在對稱軸上是否存在一個P點,使△PAC的周長最小。若存在,請你求出點P的坐標;若不存在,請你說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點,點A在x軸上,點B的縱坐標為5.點P是直線AB下方的拋物線上的一動點(不與點A、B重合),過點P作x軸的垂線交直線AB于點C,作PD⊥AB于點D.
(1)求拋物線的解析式;
(2)設點P的橫坐標為m.
①用含m的代數式表示線段PD的長,并求出線段PD長的最大值;
②連結PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

設拋物線過A(0,2),B(4,3),C三點,其中點C在直線上,且點C到拋物線對稱軸的距離等于1,則拋物線的函數解析式為       .

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如果將拋物線y=x2+2向下平移1個單位,那么所得新拋物線的表達式是( 。
A.y=(x-1)2+2B.y=(x+1)2+2
C.y=x2+1D.y=x2+3

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1)。
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

“如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.”請根據你對這句話的理解,解決下面問題:若m、n(m<n)是關于x的方程的兩根,且a < b, 則a、b、m、n 的大小關系是(   ) 
A.m < a < b< nB.a < m < n < bC.a < m < b< nD.m < a < n < b

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

方程x2+2x-1=0的根可看成函數y=x+2與函數的圖象交點的橫坐標,用此方法可推斷方程x3+x-1=0的實數根x所在范圍為( )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件。市場調查反映:如調整價格 ,每漲價一元,每星期要少賣出10件。該商品應定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

同步練習冊答案