如圖,以BC為直徑的圓0交∆CFB的邊CF于點(diǎn)A,BM平分∠ABC交AC于點(diǎn)M,AD⊥BC于點(diǎn)D,AD交BM于點(diǎn)N,ME⊥BC于點(diǎn)E,AB2 =AF.AC.

1.求△ANM≅△ENM;

2.求證:FB是圓O的切線

3.證明四邊形AMEN是菱形.

 

 

1.證明:因?yàn)锽C是圓0的直徑,

所以:∠BAC=900                                   (1分)

又EM⊥BC,BM平分∠ABC,

所以:AM=ME. ∠AMN=∠EMN

又MN=MN

所以:∆ANM≅∆ENM

2.因?yàn)椋篈B2=AF∙AC,

又∠ABF=∠C

所以:∆ABF~∆ACB                                                 (4分)

所以:∠ABF=∠C

又∠FBC=∠ABC+∠FBA= 900

.’.FB是圓O的切線

3.解:由(1)得AN=EN,AM=EM, ∠AMN=∠EMN

又:AN//ME

所以:∠ANM=∠EMN                                             (7分)

所以:∠AMN=∠ANM                                       (8分)

所以:AN=AM

AM=ME+EN=AN

所以:四邊形AMEN是菱形                                   (10分)

解析:(1)利用角平分線的性質(zhì)定理,可以得出AM=ME,∠AMN=∠EMN,再利用SAS可證出:△ANM≌△ENM

(2)利用相似三角形的判定可證出△ABF∽△ACB,從而得出∠ABF=∠C,那么可以得到∠CBF=90°

(3)利用(1)中的結(jié)論先證出∠AMN=∠ANM,可以得到AM=ME=EN=AN,從而得出四邊形AMEN是菱形,再求出△BND∽△BME,利用比例線段可求出ME的長(zhǎng),再利用菱形的面積公式可計(jì)算出菱形的面積.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,以BC為直徑的⊙O交△CFB的邊CF于點(diǎn)A,BM平分∠ABC交AC于點(diǎn)M,AD⊥BC于點(diǎn)D,AD交BM于點(diǎn)N,ME⊥BC于點(diǎn)E,AB2=AF•AC,cos∠ABD=
35
,AD=12.
(1)求證:△ANM≌△ENM;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•浦口區(qū)一模)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點(diǎn)D、E.若∠A=70°,BC=2,則圖中陰影部分面積為
7
18
π
7
18
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•澄海區(qū)模擬)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點(diǎn)D、E.若∠A=60°,BC=2,則圖中陰影部分的面積為
π
3
π
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•眉山)如圖,以BC為直徑的⊙O與△ABC的另兩邊分別相交于點(diǎn)D、E.若∠A=60°,BC=4,則圖中陰影部分的面積為
4
3
π
4
3
π
.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•攀枝花)如圖,以BC為直徑的⊙O1與⊙O2外切,⊙O1與⊙O2的外公切線交于點(diǎn)D,且∠ADC=60°,過(guò)B點(diǎn)的⊙O1的切線交其中一條外公切線于點(diǎn)A.若⊙O2的面積為π,則四邊形ABCD的面積是
12
3
12
3

查看答案和解析>>

同步練習(xí)冊(cè)答案