如圖,四邊形OABC為菱形,點(diǎn)B、C在以點(diǎn)O為圓心上,若OA=1,∠1=∠2,則扇形OEF的面積為                              【 】

A.             B.             C.         D.
C

試題分析:連接OB,根據(jù)菱形的性質(zhì)可得OA=OB=AB,即可證得三角形ABO為正三角形,可得∠AOB=60°,則可得∠EOF=120°,最后根據(jù)扇形的面積公式求解即可.
連接OB

∵四邊形OABC為菱形,點(diǎn)B、C在以點(diǎn)O為圓心的上,若OA=1,∠1=∠2,
∴OA=OB=AB,
∴三角形ABO為正三角形,
∴∠AOB=60°,
∴∠EOF=120°,
∴扇形OEF的面積
故選C.
點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握菱形的四條邊相等;扇形的面積公式:.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知兩圓的半徑分別為2和3,圓心距為6,則兩圓的位置關(guān)系是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知:如圖,AB=BC,∠ABC=90°,以AB為直徑的⊙OOC與點(diǎn)D,AD的延長(zhǎng)線交BC于點(diǎn)E,過(guò)D作⊙O的切線交BC于點(diǎn)F。下列結(jié)論:①CD2=CE·CB;②4EF2=ED·EA;③∠OCB=∠EAB;④DF=CD.其中正確的有            (填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O過(guò)四邊形ABCD的四個(gè)頂點(diǎn),已知∠ABC=90º,BD平分∠ABC,則:①ADCD,② BDABCB,③點(diǎn)O是∠ADC平分線上的點(diǎn),④,上述結(jié)論中正確的編號(hào)是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,Rt△OA1B1是由Rt△OAB繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)得到的,且A、O、B1三點(diǎn)共線.如果∠OAB=90°,∠AOB=30°,OA=.則圖中陰影部分的面積為          .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:圖1為一銳角是30°的直角三角尺,其邊框?yàn)橥该魉芰现瞥?內(nèi)、外直角三角形對(duì)應(yīng)邊互相平行且三處所示寬度相等).
操作:將三角尺移向直徑為4cm的⊙O,它的內(nèi)RtABC的斜邊AB恰好等于⊙O的直徑,它的外RtABC′的直角邊AC′ 恰好與⊙O相切(如圖2)。

思考:(1) 求直角三角尺邊框的寬。
(2) 求BB′C′+CC′B′的度數(shù)。
(3) 求邊B′C′的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,等腰梯形ABCD中,AD∥BC,以點(diǎn)C為圓心,CD為半徑的弧與BC交于點(diǎn)E,四邊形 ABED是平行四邊形,AB=6, 則扇形 CDE(陰影部分)的面積是(     )
A.2πB.4πC.6πD.12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,過(guò)⊙O上的點(diǎn)C作切線交AB的延長(zhǎng)線于點(diǎn)D,∠D=30º.

(1)求∠A的度數(shù);
(2)過(guò)點(diǎn)CCFAB于點(diǎn)E,交⊙O于點(diǎn)F,CF=4,求的長(zhǎng)度(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,內(nèi)接于⊙O,,是⊙O上與點(diǎn)關(guān)于圓心成中心對(duì)稱的點(diǎn),邊上一點(diǎn),連結(jié).已知,是線段上一動(dòng)點(diǎn),連結(jié)并延長(zhǎng)交四邊形的一邊于點(diǎn),且滿足,則的值為_(kāi)______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案