【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標(biāo)分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結(jié)論:①4a﹣2b+c<0;2a﹣b<0;a+c<1;b2+8a>4ac.其中正確的有(

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】

由拋物線的開口方向判斷a0的關(guān)系,由拋物線與y軸的交點判斷c0的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.

解:①根據(jù)圖象知,當(dāng)x=-2時,y<0,即4a-2b+c<0;故本選項正確;
∵該函數(shù)圖象的開口向下,

∴a<0,
對稱軸-1<x=-<0,

∴2a-b<0,故本選項正確;
③已知拋物線經(jīng)過(-1,2),a-b+c=2(1),

由圖知:當(dāng)x=1,y<0,a+b+c<0(2),

聯(lián)立(1)(2),得:a+c<1,故本選項正確;
④∵y=>2,a<0,
∴4ac-b2<8a,即b2+8a>4ac,故本選項正確
綜上所述,正確的結(jié)論有4.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:a+,其中a1010

如圖是小亮和小芳的解答過程.

1  的解法是錯誤的,錯誤的原因在于未能正確地運用二次根式的性質(zhì):   a0);

2)先化簡,再求值:x+2,其中x=﹣2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的各邊,在邊BC的同側(cè)分別作三個正方形ABDIBCFE,ACHG

1)求證:BDEBAC

2)求證:四邊形ADEG是平行四邊形.

3)直接回答下面兩個問題,不必證明:

當(dāng)ABC滿足條件_____________________時,四邊形ADEG是矩形.

當(dāng)ABC滿足條件_____________________時,四邊形ADEG是正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識

的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.

(1)本次調(diào)查的學(xué)生共有__________人,估計該校1200 名學(xué)生中不了解的人數(shù)是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,OAB的頂點AB的坐標(biāo)分別是A(0,5),B(3,1),過點BBCAB交直線于點C,連結(jié)AC,以點A為圓心,AC為半徑畫弧交x軸負(fù)半軸于點D,連結(jié)AD、CD

(1)求證:ABC≌△AOD

(2)設(shè)ACD的面積為,求關(guān)于的函數(shù)關(guān)系式

(3)若四邊形ABCD恰有一組對邊平行,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBCDBEACF,BEADFBFAC,

1)求證:FDCD;

2)連DE,求證:ED平分∠BEC

3)在(2)條件下,點PAC上,連BP、DP,BPADQ, BP平分∠EBC,∠BPDBFD,APQ的面積為4,求線段PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則在下列代數(shù)式:ac;a+b+c;4a-2b+c;2a+b;b2-4ac中,值大于0的序號為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)ykx+b的圖象過A(1,1)B(2,﹣1)

1)求一次函數(shù)ykx+b的表達(dá)式;

2)求直線ykx+b與坐標(biāo)軸圍成的三角形的面積;

3)將一次函數(shù)ykx+b的圖象沿y軸向下平移3個單位,則平移后的函數(shù)表達(dá)式為   ,再向右平移1個單位,則平移后的函數(shù)表達(dá)式為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時,yx的增大而增大,且2≤x≤1時,y的最大值為9,則a的值為

A. 12 B.

C. D. 1

查看答案和解析>>

同步練習(xí)冊答案