如圖所示,四邊形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,點P從A出發(fā),以1cm/s的速度向點D運動;點Q從點C同時出發(fā),以3cm/s的速度向B運動,其中一個動點到達端點時,另一動點也隨之停止運動,從運動開始,經(jīng)過多少時間,四邊形PQCD成為等腰梯形?

解:設點Q移動到Q′時,四邊形PQCD成為等腰梯形,經(jīng)過t秒,四邊形PQCD成為等腰梯形.
∵AD∥BC,
∴只要Q′C=PD,四邊形PQ′CD就為平行四邊形,
即3t=24-t,
解得t=6,即當t=6秒時,四邊形PQ′CD就是平行四邊形.
同理,只要PQ′=CD,PD≠CQ′時,四邊形PQCD就是等腰梯形.
從P、D分別作BC的垂線交BC于E、F,則EF=PD,Q′E=FC=26-24=2.
∴2=[3t-(24-t)],
解得,t=7
∴當t=7時,四邊形PQCD為等腰梯形.
分析:由題意得AP=t,DP=24-t,CQ=3t,0≤t≤,因為AD∥BC,則根據(jù)等腰梯形的判定知,只要當DP≠CQ′、PQ′=CD時,四邊形PQCD為等腰梯形,據(jù)此列出關于t的方程,解方程即可求得t值.
點評:本題考查了等腰梯形的判定、直角梯形的性質(zhì).解答該題時,利用了兩腰相等的梯形是等腰梯形來證明四邊形PQCD為等腰梯形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關系為
 

(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:新課標 讀想練同步測試 七年級數(shù)學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案