解:(1)將△ACE繞點C順時針旋轉60°后能得到△DCB;
(2)如圖,相等且垂直.理由如下:
∵EF∥GD,
∴∠NEM=∠DGM,而EN=GD,GM=EM,
∴△MGD≌△MEN,
∴DM=NM,在Rt△DNF中,
,
∵NE=GD,GD=CD,
∴NE=CD,
∴FN=FD,
即FM⊥DM,
∴DM與FM相等且垂直.
(3)如圖,MD與MF相等且垂直.理由如下:
延長DM交CE于N,連接DF、FN,
根據(jù)(2)可以得到△MGD≌△MNE,
∴DM=NM,NE=DG,
∵∠DCF=∠FEN=45°,DC=DG=NE,F(xiàn)C=FE,
∴△DCF≌△NEF,
∴DF=FN,∠DFC=∠NFE,
∴∠DFN=90°,即△FDN為等腰直角三角形,
∵DM=NM,即FM為斜邊DN的中線,
∴FM=DM=NM=
DN,且FM⊥DN,
則FM=DM,F(xiàn)M⊥DM.
分析:(1)容易根據(jù)已知條件證明△ACE≌△DCE,所以△ACE繞點C順時針旋轉60°后能得到△DCB;
(2)相等且垂直.根據(jù)已知得到DG=NE,MG=ME,而根據(jù)已知NB∥GD,現(xiàn)在就可以證明△MGD≌△MEN,從而得到DM=NM,而∠DFN=90°,從而得到
,而NE=GD,GD=CD,可以推出NE=CD,∴FN=FD,可以得到FM⊥DM,所以DM與FM相等且垂直;
(3)相等且垂直.延長DM交CE于N,連接DF、FN,先證△MGD≌△MNE,可以得到DM=NM,NE=DG,再根據(jù)正方形的性質和全等三角形的性質可以得到DC=DG=NE,F(xiàn)C=FE,現(xiàn)在可以證明△DCF≌△NEF,然后利用全等三角形的性質就可以證FM=DM,F(xiàn)M⊥DM.
點評:此題是開放性試題,把圖形變換放在正方形的背景中,利用正方形的性質進行探究,然后找到圖形變換的規(guī)律.