如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點(diǎn)A與邊CD上的點(diǎn)E重合,折痕FG分別與AB,CD交于點(diǎn)G,F(xiàn),AE與FG交于點(diǎn)O.
(1)如圖1,求證:A,G,E,F(xiàn)四點(diǎn)圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點(diǎn)N時(shí),求證:點(diǎn)N是線段BC的中點(diǎn);
(3)如圖2,在(2)的條件下,求折痕FG的長(zhǎng).
(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)
解:(1)由折疊的性質(zhì)可得,GA=GE,∠AGF=∠EGF,
∵DC∥AB,
∴∠EFG=∠AGF,
∴∠EFG=∠EGF,
∴EF=EG=AG,
∴四邊形AGEF是平行四邊形(EF∥AG,EF=AG),
又∵AG=GE,
∴四邊形AGEF是菱形.
(2)連接ON,

∵△AED是直角三角形,AE是斜邊,點(diǎn)O是AE的中點(diǎn),△AED的外接圓與BC相切于點(diǎn)N,
∴ON⊥BC,
∵點(diǎn)O是AE的中點(diǎn),
∴ON是梯形ABCE的中位線,
∴點(diǎn)N是線段BC的中點(diǎn).
(3)∵OE、ON均是△AED的外接圓的半徑,
∴OE=OA=ON=2,
故可得AE=AB=4,
在RT△ADE中,AD=2,AE=4,
∴∠AED=30°,
在RT△OEF中,OE=2,∠AED=30°,
,
故可得FG=
(1)根據(jù)折疊的性質(zhì)判斷出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,從而判斷出EF=AG,得出四邊形AGEF是平行四邊形,繼而結(jié)合AG=GE,可得出結(jié)論.
(2)連接ON,則ON⊥BC,從而判斷出ON是梯形ABCE的中位線,繼而可得出結(jié)論.
(3)根據(jù)(1)可得出AE=AB,繼而在RT△ADE中,可判斷出∠AED為30°,在RT△EFO中求出FO,繼而可得出FG的長(zhǎng)度
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)如圖1,在ABCD中,點(diǎn)E,F(xiàn)分別在AB,CD上,AE=CF.求證:DE=BF.
(2)如圖2,在△ABC中,AB=AC,∠A=40°,BD是∠ABC的平分線,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖(l),在正方形ABCD中,點(diǎn)E、F分別在AB、BC上,且AE=BF,AF與DE交于點(diǎn)G.

(1)試探索線段AF、DE的數(shù)量和位置關(guān)系,寫出你的結(jié)論并說(shuō)明理由;
(2)連結(jié)EF、DF,分別取AE、EF、FD、DA的中點(diǎn)H、I、J、K,則四邊形HIJK是什么特殊平行四邊形?請(qǐng)?jiān)趫D(2)中補(bǔ)全圖形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知兩個(gè)菱形ABCD.CEFG,其中點(diǎn)A.C.F在同一直線上,連接BE、DG.
(1)在不添加輔助線時(shí),寫出其中的兩對(duì)全等三角形;
(2)證明:BE=DG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面給出的四個(gè)命題中,是假命題的是(   )
A.如果a=3,那么|a|=3B.如果(a-1)(a+2)=0,那么a-1=0或a+2=0
C.如果x2=4,那么x=2D.如果四邊形ABCD是正方形,那么它是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,楊伯家小院子的四棵小樹剛好在其梯形院子各邊的中點(diǎn)上,若在四邊形種上小草,則這塊草地的形狀是           ( ▲ )
A.平行四邊形B.矩形C.正方形D.菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在斜邊長(zhǎng)為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1C1D1;在等腰直角三角形OA1B1中,作內(nèi)接正方形A2B2C2D2;在等腰直角三角形OA2B2中,作內(nèi)接正方形A3B3C3D3;……;依次作下去,則第n個(gè)正方形AnBnCnDn的邊長(zhǎng)是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,線段AC=n+1(其中n為正整數(shù)),點(diǎn)B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時(shí),△AME的面積記為S1;當(dāng)AB=2時(shí),△AME的面積記為S2;當(dāng)AB=3時(shí),△AME的面積記為S3;…;當(dāng)AB=n時(shí),△AME的面積記為Sn.當(dāng)n≥2時(shí),Sn﹣Sn﹣1=  ▲  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)學(xué)實(shí)驗(yàn)室:小明取出一張矩形紙片ABCD,AD=BC=5,AB=CD=25.他先在矩形ABCD的邊AB上取一點(diǎn)M,接著在CD上取一點(diǎn)N,然后將紙片沿MN折疊,使MB′與DN交于點(diǎn)K,得到△MNK(如圖①).
(1)試判斷△MNK的形狀,并說(shuō)明理由.

(2)如何折疊能夠使△MNK的面積最大?請(qǐng)你利用備用圖探究可能出現(xiàn)的情況,求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案