(2010•崇左)如圖,是一個(gè)圓柱體筆筒和一個(gè)正方體箱子.那么它的正視圖是( )

A.
B.
C.
D.
【答案】分析:從正面看得到圓柱的正視圖為長(zhǎng)方形,正方體的正視圖為正方形.
解答:解:從正面看可得到中間有空隙的一個(gè)長(zhǎng)方形和一個(gè)正方形的組合圖形,故選C.
點(diǎn)評(píng):本題考查了三視圖的知識(shí),正視圖是從物體的正面看得到的視圖.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年甘肅省蘭州市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

(2010•崇左)如圖,平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•崇左)如圖,平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•崇左)如圖,平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西崇左市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•崇左)如圖,平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年浙江省金華市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2010•崇左)如圖,平面直角坐標(biāo)系中,直線AB與x軸,y軸分別交于A(3,0),B(0,)兩點(diǎn),點(diǎn)C為線段AB上的一動(dòng)點(diǎn),過點(diǎn)C作CD⊥x軸于點(diǎn)D.
(1)求直線AB的解析式;
(2)若S梯形OBCD=,求點(diǎn)C的坐標(biāo);
(3)在第一象限內(nèi)是否存在點(diǎn)P,使得以P,O,B為頂點(diǎn)的三角形與△OBA相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案