如圖,等腰△ABC中,AB=AC,∠BAC=36°,BC=1,點(diǎn)D在邊AC上且BD平分∠ABC,設(shè)CD=x.
(1)求證:△ABC∽△BCD;
(2)求x的值;
(3)求cos36°-cos72°的值.
(1)證明見解析;(2);(3)

試題分析:(1)由等腰三角形ABC中,頂角的度數(shù)求出兩底角度數(shù),再由BD為角平分線求出∠DBC的度數(shù),得到∠DBC=∠A,再由∠C為公共角,利用兩對(duì)角相等的三角形相似得到三角形ABC與三角形BCD相似;
(2)根據(jù)(1)結(jié)論得到AD=BD=BC,根據(jù)AD+DC表示出AC,由(1)兩三角形相似得比例求出x的值即可;
(3)過B作BE垂直于AC,交AC于點(diǎn)E,在直角三角形ABE和直角三角形BCE中,利用銳角三角函數(shù)定義求出cos36°與cos72°的值,代入原式計(jì)算即可得到結(jié)果.
試題解析:(1)∵等腰△ABC中,AB=AC,∠BAC=36°,
∴∠ABC=∠C=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°,
∵∠CBD=∠A=36°,∠C=∠C,
∴△ABC∽△BCD;
(2)∵∠A=∠ABD=36°,
∴AD=BD,
∵BD=BC,
∴AD=BD=CD=1,
設(shè)CD=x,則有AB=AC=x+1,
∵△ABC∽△BCD,
,即,
整理得:x2+x-1=0,
解得:x1=,x2=(負(fù)值,舍去),
則x=;
(3)過B作BE⊥AC,交AC于點(diǎn)E,

∵BD=CD,
∴E為CD中點(diǎn),即DE=CE=
在Rt△ABE中,cosA=cos36°=
在Rt△BCE中,cosC=cos72°=,
則cos36°-cos72°=-=
【考點(diǎn)】1.相似三角形的判定與性質(zhì);2.等腰三角形的性質(zhì);3.黃金分割;4.解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)活動(dòng)﹣求重疊部分的面積

(1)問題情境:如圖①,將頂角為120°的等腰三角形紙片(紙片足夠大)的頂點(diǎn)P與等邊△ABC的內(nèi)心O重合,已知OA=2,則圖中重疊部分△PAB的面積為      
(2)探究1:在(1)的條件下,將紙片繞P點(diǎn)旋轉(zhuǎn)至如圖②所示位置,紙片兩邊分別與AC,AB交于點(diǎn)E,F(xiàn),圖②中重疊部分的面積與圖①重疊部分的面積是否相等?如果相等,請(qǐng)給予證明;如果不相等,請(qǐng)說明理由.
(3)探究2:如圖③,若∠CAB=α(0°<α<90°),AD為∠CAB的角平分線,點(diǎn)P在射線AD上,且AP=2,以P為頂點(diǎn)的等腰三角形紙片(紙片足夠大)與∠CAB的兩邊AC,AB分別交于點(diǎn)E、F,∠EPF=180°﹣α,求重疊部分的面積.(用α或的三角函數(shù)值表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在一次科技活動(dòng)中,小明進(jìn)行了模擬雷達(dá)雪描實(shí)驗(yàn).如圖,表盤是△ABC,其中AB=AC,∠BAC=120°,在點(diǎn)A處有一束紅外光線AP,從AB開始,繞點(diǎn)A逆時(shí)針勻速旋轉(zhuǎn),每秒鐘旋轉(zhuǎn)15°,到達(dá)AC后立即以相同的旋轉(zhuǎn)速度返回A、B,到達(dá)后立即重復(fù)上述旋轉(zhuǎn)過程.小明通過實(shí)驗(yàn)發(fā)現(xiàn),光線從AB處開始旋轉(zhuǎn)計(jì)時(shí),旋轉(zhuǎn)1秒, 時(shí)光線AP交BC于點(diǎn)M,BM的長為()cm.
(1)求AB的長;
(2)從AB處旋轉(zhuǎn)開始計(jì)時(shí),若旋轉(zhuǎn)6秒,此時(shí)AP與BC邊交點(diǎn)在什么位置?若旋轉(zhuǎn)2014秒,此時(shí)AP與BC邊交點(diǎn)在什么位置?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在山坡上植樹,已知山坡的傾斜角α是20°,小明種植的兩棵樹間的坡面距離AB是6米,要求相鄰兩棵樹間的水平距離AC在5.3~5.7米范圍內(nèi),問小明種植的這兩棵樹是否符合這個(gè)要求?
(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)運(yùn)用你喜歡的方法求tan75°=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一直升飛機(jī)航拍時(shí)測得正前方一建筑物A的俯角為60°,1號(hào)機(jī)組B的俯角為45°.已知建筑物A離1號(hào)機(jī)組B距離為10公里,問此時(shí)飛行員有沒有被輻射的危險(xiǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠A=90°,有一個(gè)銳角為60°,BC=6.若點(diǎn)P在直線AC上(不與點(diǎn)A,C重合),且∠ABP=30°,則CP的長為           

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,A,B兩地之間有一座山,汽車原來從A地到B地須經(jīng)C地沿折線A–C-B行駛,全長68 km.現(xiàn)開通隧道后,汽車直接沿直線AB行駛.已知∠A=30°,∠B=45°,則隧道開通后,汽車從A地到B地比原來少走多少千米?(結(jié)果精確到0.1 km)(參考數(shù)據(jù):,

查看答案和解析>>

同步練習(xí)冊(cè)答案