(2013•北塘區(qū)一模)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB、BD為鄰邊作?ABDE,連接AD、EC.求證:AD=EC.
分析:利用等邊對等角以及平行四邊形的性質可以證得∠EDC=∠ACB,則易證△ADC≌△ECD,利用全等三角形的對應邊相等即可證得.
解答:證明:∵AB=AC,
∴∠B=∠ACB,
又∵?ABDE中,AB=DE,AB∥DE,
∴∠B=∠EDC=∠ACB,AC=DE,
∴在△ADC和△ECD中,
AC=DE
∠EDC=∠ACB
DC=CD

∴△ADC≌△ECD.
∴AD=EC.
點評:本題考查了平行四邊形的性質以及等腰三角形的性質、全等三角形的判定與性質,證明兩線段相等常用的方法就是轉化為證兩三角形全等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•北塘區(qū)一模)在下列圖案中,既是軸對稱圖形又是中心對稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北塘區(qū)一模)如圖,在Rt△ABC中,D、E分別是AC、AB的中點,DE=1.5,CE=2.5,則AC=
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北塘區(qū)一模)(1)計算:(
1
2
)-1-
3
cos30°+(2013-π)0
; 
(2)
x
x-1
+
1
(x-1)(x-2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北塘區(qū)一模)(1)解方程:x2-6x+3=0;    
(2)解不等式組:
2x-1≤2
x-1
4
x
3

查看答案和解析>>

同步練習冊答案