【題目】如圖,AD是⊙O的弦,AB經(jīng)過圓心O,交⊙O于點(diǎn)C.∠DAB=∠B=30°.
(1)直線BD是否與⊙O相切?為什么?
(2)連接CD,若CD=5,求AB的長.

【答案】
(1)解:直線BD與⊙O相切.理由如下:

如圖,連接OD,

∵∠DAB=∠B=30°,∴∠ADB=120°,

∵OA=OD,∴∠ODA=∠OAD=30°,

∴∠ODB=∠ADB﹣∠ODA=120°﹣30°=90°.

所以直線BD與⊙O相切


(2)解:連接CD,

∠COD=∠OAD+∠ODA=30°+30°=60°,

又OC=OD

∴△OCD是等邊三角形,

即:OC=OD=CD=5=OA,

∵∠ODB=90°,∠B=30°,

∴OB=10,

∴AB=AO+OB=5+10=15.


【解析】(1)連接OD,通過計(jì)算得到∠ODB=90°,證明BD與⊙O相切.(2)△OCD是邊長為5的等邊三角形,得到圓的半徑的長,然后求出AB的長.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識(shí),掌握在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半,以及對(duì)圓周角定理的理解,了解頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿BC方向平移2cm得到△DEF,若△ABC的周長為16cm,則四邊形ABFD的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)相交于點(diǎn)A,且點(diǎn)A的橫坐標(biāo)為4.

(1)求點(diǎn)A的坐標(biāo)及一次函數(shù)的解析式;
(2)若直線x=2與反比例函數(shù)和一次函數(shù)的圖象分別交于點(diǎn)B、C,求線段BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,按照三視圖確定該幾何體的側(cè)面積是(圖中尺寸單位:cm)(
A.40πcm2
B.65πcm2
C.80πcm2
D.105πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.

(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù) ,當(dāng)自變量x取m時(shí)對(duì)應(yīng)的值大于0,當(dāng)自變量x分別取m﹣1、m+1時(shí)對(duì)應(yīng)的函數(shù)值為y1、y2 , 則y1、y2必須滿足(
A.y1>0、y2>0
B.y1<0、y2<0
C.y1<0、y2>0
D.y1>0、y2<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店以6元/千克的價(jià)格購進(jìn)某種干果1140千克,并對(duì)其進(jìn)行篩選分成甲級(jí)干果與乙級(jí)干果后同時(shí)開始銷售.這批干果銷售結(jié)束后,店主從銷售統(tǒng)計(jì)中發(fā)現(xiàn):甲級(jí)干果與乙級(jí)干果在銷售過程中每天都有銷量,且在同一天賣完;甲級(jí)干果從開始銷售至銷售的第x天的總銷量y1(千克)與x的關(guān)系為y1=﹣x2+40x;乙級(jí)干果從開始銷售至銷售的第t天的總銷量y2(千克)與t的關(guān)系為y2=at2+bt,且乙級(jí)干果的前三天的銷售量的情況見下表:

t

1

2

3

y2

21

44

69


(1)求a、b的值;
(2)若甲級(jí)干果與乙級(jí)干果分別以8元/千克和6元/千克的零售價(jià)出售,則賣完這批干果獲得的毛利潤是多少元?
(3)問從第幾天起乙級(jí)干果每天的銷量比甲級(jí)干果每天的銷量至少多6千克? (說明:毛利潤=銷售總金額﹣進(jìn)貨總金額.這批干果進(jìn)貨至賣完的過程中的損耗忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長為20cm,AE平分∠BAD,若CE=2cm,則AB的長度是( 。

A.10cm
B.8cm
C.6cm
D.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“愛滿揚(yáng)州”慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成統(tǒng)計(jì)圖.

(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元。
(2)求這50名同學(xué)捐款的平均數(shù)。
(3)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案