閱讀材料:如圖,過△ABC的三個頂點分別作出水平垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可以得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:如圖,拋物線頂點坐標為點C(1,4)交x軸于點A,交y軸于點B(0,3)

(1)求拋物線解析式和線段AB的長度;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
(3)在第一象限內(nèi)求一點P,使S△PAB=S△CAB
【答案】分析:(1)利用頂點式求得拋物線的解析式,然后求得點A的坐標,從而求得線段AB的長;
(2)利用待定系數(shù)法求得直線AB的解析式,然后求得CD的長,從而求得三角形ABC的面積;
(3)設(shè)P點的橫坐標為x,△PAB的鉛垂高為h,表示出h關(guān)于x的函數(shù)關(guān)系式,然后利用面積相等求得x的值,從而確定點P的坐標.
解答:解:(1)設(shè)拋物線的解析式為:,
把B(0,3)代入解析式求得a=-1
所以,
令y1=0,得0=-x2+2x+3,解得x1=-1,x2=3
∴A點的坐標為(3,0)
∴AB=3;

(2)設(shè)直線AB的解析式為:y2=kx+b
由A(3,0),B(0,3)

∴直線AB的解析式為y2=-x+3 …(4分)
因為C點坐標為(1,4),
所以當x=1時,y1=4,y2=2,
所以CD=4-2=2,
(平方單位);

(3)設(shè)P點的橫坐標為x,△PAB的鉛垂高為h,
;
由S△PAB=S△CAB得:
,
解得x=2或x=1(舍).
所以P(2,3).
點評:此題主要考查了用頂點式求二次函數(shù)解析式,以及待定系數(shù)法求解析式和三角形面積求法,綜合性較強.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是
 

精英家教網(wǎng)
(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:S△ABC=
1
2
ah
,即三角形面積等于水平寬與鉛垂高乘積的一半.
精英家教網(wǎng)
解答下列問題:
如圖,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=
9
8
S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2013•豐南區(qū)一模)閱讀材料:如圖,過△ABC的三個頂點分別作出水平垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可以得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:如圖,拋物線頂點坐標為點C(1,4)交x軸于點A,交y軸于點B(0,3)

(1)求拋物線解析式和線段AB的長度;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)在第一象限內(nèi)拋物線上求一點P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.
我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
已知:直線l1:y=-2x+6與x軸交于點A,直線l2:y=x+3與y軸交于點B,直線l1、l2交于點C.
(1)建立平面直角坐標系,畫出示意圖(無需列表)并求出C點的坐標;
(2)利用閱讀材料提供的方法求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

閱讀材料:如圖,過△ABC的三個頂點分別作出水平垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可以得出一種計算三角形面積的新方法:S△ABC=數(shù)學公式ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:如圖,拋物線頂點坐標為點C(1,4)交x軸于點A,交y軸于點B(0,3)

(1)求拋物線解析式和線段AB的長度;
(2)點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(3)在第一象限內(nèi)求一點P,使S△PAB=S△CAB

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年浙江省溫州市永嘉縣九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

附加題:
(1)如圖,AB、CD是⊙O的兩條弦,它們相交于點P,連接AD、BD,已知AD=BD=4,PC=6,那么CD的長是______.

(2)閱讀材料:如圖,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計算三角形面積的新方法:,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),交y軸于點B.
①求拋物線和直線AB的解析式;
②點P是拋物線(在第一象限內(nèi))上的一個動點,連接PA,PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB
③點P是拋物線(在第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=S△CAB,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案