如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線L與拋物線交于A、C兩點,其中C點的橫坐標為2.

(1)求拋物線的解析式及直線AC的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標;如果不存在,請說明理由.

(1)拋物線的解析式y(tǒng)=x2-2x-3,直線AC的函數(shù)解析式是y=-x-1;(2)PE的最大值=
(3)F點的坐標是(-3,0),(1,0),(4-,0),(4+,0).

解析試題分析:(1)將A、B的坐標代入拋物線中,易求出拋物線的解析式;將C點橫坐標代入拋物線的解析式中,即可求出C點的坐標,再由待定系數(shù)法可求出直線AC的解析式.
(2)PE的長實際是直線AC與拋物線的函數(shù)值的差,可設P點的橫坐標為x,用x分別表示出P、E的縱坐標,即可得到關于PE的長、x的函數(shù)關系式,根據(jù)所得函數(shù)的性質即可求得PE的最大值.
(3)此題要分兩種情況:①以AC為邊,②以AC為對角線.確定平行四邊形后,可直接利用平行四邊形的性質求出F點的坐標.
試題解析:解:(1)將A(-1,0),B(3,0)代入y=x2+bx+c,得b=-2,c=-3;
∴y=x2-2x-3.
將C點的橫坐標x=2代入y=x2-2x-3,得y=-3,
∴C(2,-3);
∴直線AC的函數(shù)解析式是y=-x-1.
(2)設P點的橫坐標為x(-1≤x≤2),
則P、E的坐標分別為:P(x,-x-1),E(x,x2-2x-3);
∵P點在E點的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2,
∴當x=時,PE的最大值=
(3)存在4個這樣的點F,分別是F1(1,0),F(xiàn)2(-3,0),F(xiàn)3(4+,0),F(xiàn)4(4-,0).
①如圖,連接C與拋物線和y軸的交點,
∵C(2,-3),G(0,-3)
∴CG∥X軸,此時AF=CG=2,
∴F點的坐標是(-3,0);

②如圖,AF=CG=2,A點的坐標為(-1,0),因此F點的坐標為(1,0);

③如圖,此時C,G兩點的縱坐標關于x軸對稱,因此G點的縱坐標為3,代入拋物線中即可得出G點的坐標為(1±,3),由于直線GF的斜率與直線AC的相同,因此可設直線GF的解析式為y=-x+h,將G點代入后可得出直線的解析式為y=-x+4+.因此直線GF與x軸的交點F的坐標為(4+,0);
④如圖,同③可求出F的坐標為(4-,0);

綜合四種情況可得出,存在4個符合條件的F點
考點:二次函數(shù)綜合題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

一場籃球賽中,小明跳起投籃,已知球出手時離地面高米,與籃圈中心的水平距離為8米,當球出手后水平距離為4米時到達最大高度4米,若籃球運行的軌跡為拋物線,籃圈中心距離地面3米.

(1)建立如圖的平面直角坐標系,求拋物線的解析式;
(2)問此球能否投中?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線x=﹣4與x軸交于點E,一開口向上的拋物線過原點交線段OE于點A,交直線x=﹣4于點B,過B且平行于x軸的直線與拋物線交于點C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點A的坐標;
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=x2-2kx+3k+4.
(1)頂點在y軸上時,k的值為_________.
(2)頂點在x軸上時,k的值為_________.
(3)拋物線經過原點時,k的值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線經過A(﹣2,0),B(﹣3,3)及原點O,頂點為C.
(1)求拋物線的函數(shù)解析式;
(2)求拋物線的對稱軸和C點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)圖象的頂點是(-1,2),且過點(0,).

(1)求二次函數(shù)的表達式,并在圖中畫出它的圖象;
(2)判斷點(2,)是否在該二次函數(shù)圖象上;并指出當取何值時,?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線上有一點M(x0,)位于軸下方.
(1)求證:此拋物線與x軸交于兩點;
(2)設此拋物線與軸的交點為A(,0),B(,0),且<,求證:<<

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知方程有兩個不同的實數(shù)根,方程也有兩個不同的實數(shù)根,且其兩根介于方程的兩根之間,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖是我省某地一座拋物線形拱橋,橋拱在豎直平面內,與水平橋面相交于A,B兩點,橋拱最高點C到AB的距離為9m,AB=36m,D,E為橋拱底部的兩點,且DE∥AB,點E到直線AB的距離為7m,則DE的長為   m.

查看答案和解析>>

同步練習冊答案