(2013•濱湖區(qū)一模)計算:
(1)|-
2
|+
4
-(
1
3
)0-2cos45°

(2)化簡
a2
a+1
-a+1
分析:(1)根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值得到原式=
2
+2-1-2×
2
2
,然后進(jìn)行乘法運(yùn)算后合并即可;
(2)先進(jìn)行通分得到原式=
a2
a+1
-
(a+1)(a-1)
a+1
,然后進(jìn)行同分母的分式的減法運(yùn)算.
解答:解:(1)原式=
2
+2-1-2×
2
2

=1;

(2)原式=
a2
a+1
-
(a+1)(a-1)
a+1
   
=
a2-(a2-1)
a+1
  
=
1
a+1
點(diǎn)評:本題考查了分式的加減法:先把各分式化為同分母,再把分母不變,分子進(jìn)行加減運(yùn)算,然后進(jìn)行約分得到最簡分式或整式.也考查了實(shí)數(shù)的運(yùn)算、零指數(shù)冪以及特殊角的三角函數(shù)值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)若拋物線y=x2-x+m與x軸只有一個公共點(diǎn),則m=
1
4
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)在5張完全相同的卡片上分別畫上等邊三角形、平行四邊形、等腰梯形、正六邊形和圓. 在看不見圖形的情況下隨機(jī)摸出1張,則這張卡片上的圖形是中心對稱圖形的概率是
3
5
3
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)無錫地鐵1、2號線即將于2014年通車,為了解市民對地鐵票的定價意向,市物價局向社會公開征集定價意見.現(xiàn)某校課外小組也開展了“你認(rèn)為無錫地鐵起步價定為多少合適”的問卷調(diào)查,征求社區(qū)居民的意見,并將調(diào)查結(jié)果整理后制成了如下統(tǒng)計圖:

根據(jù)統(tǒng)計圖解答:
(1)同學(xué)們一共隨機(jī)調(diào)查了
300
300
人;
(2)請你把條形統(tǒng)計圖補(bǔ)充完整;
(3)如果在該社區(qū)隨機(jī)咨詢一位居民,那么該居民支持“起步價為2元”的概率是
0.4
0.4
;
(4)假定該社區(qū)有1萬人,請估計該社區(qū)支持“起步價為3元”的居民大約有
3500
3500
人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)已知拋物線y=x2-2ax+a2 (a為常數(shù),a>0),G為該拋物線的頂點(diǎn).
(1)如圖1,當(dāng)a=2時,拋物線與y軸交于點(diǎn)M,求△GOM的面積;
(2)如圖2,將拋物線繞頂點(diǎn)G逆時針旋轉(zhuǎn)90°,所得新圖象與y軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),D為x軸的正半軸上一點(diǎn),以O(shè)D為一對角線作平行四邊形OQDE,其中Q點(diǎn)在第一象限.QE交OD于點(diǎn)C,若QO平分∠AQC,AQ=2QC.
①求證:△AQO≌△EQO;
②若QD=OG,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)Rt△ABC在直角坐標(biāo)系內(nèi)的位置如圖1所示,反比例函數(shù)y=
k
x
(k≠0)
在第一象限內(nèi)的圖象與BC邊交于點(diǎn)D(4,m),與直線AB:y=
1
2
x+b交于點(diǎn)E(2,n).
(1)m=
1
2
n
1
2
n
,點(diǎn)B的縱坐標(biāo)為
n+1
n+1
;(用含n的代數(shù)式表示);
(2)若△BDE的面積為2,設(shè)直線AB與y軸交于點(diǎn)F,問:在射線FD上,是否存在異于點(diǎn)D的點(diǎn)P,使得以P、B、F為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)在(2)的條件下,現(xiàn)有一動點(diǎn)M,從O點(diǎn)出發(fā),沿x軸的正方向,以每秒2個單位的速度運(yùn)動,設(shè)運(yùn)動時間為t(s),問:是否存在這樣的t,使得在直線AB上,有且只有一點(diǎn)N,滿足∠MNC=45°?若存在,請求出所有符合條件的t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案