【題目】如圖,有一直徑MN=4的半圓形紙片,其圓心為點(diǎn)P,從初始位置開(kāi)始,在無(wú)滑動(dòng)的情況下沿?cái)?shù)軸向右翻滾至位置,其中位置中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點(diǎn)O;位置和位置中的MN垂直于數(shù)軸;位置中的MN在數(shù)軸上.

解答下列問(wèn)題:

(1)位置中的MN與數(shù)軸之間的距離為____________;

(2)位置中的半⊙P與數(shù)軸的位置關(guān)系是________;

(3)求位置中的圓心P在數(shù)軸上表示的數(shù);

(4)紙片半⊙P從位置翻滾到位置時(shí),求該紙片所掃過(guò)圖形的面積.

【答案】(1)2;(2)相切;(3);(4)掃過(guò)的圖形面積=

【解析】

(1)由圓的性質(zhì)即可求解;

(2)由(1)中圓的半徑,再根據(jù)切線的性質(zhì)進(jìn)行解答;

(3)根據(jù)位置的長(zhǎng)與數(shù)軸上線段ON相等求出的長(zhǎng),再根據(jù)弧長(zhǎng)公式求出的長(zhǎng),進(jìn)而可得出結(jié)論;

(4)NC垂直數(shù)軸于點(diǎn)C,作PHNC于點(diǎn)H,連接PA,則四邊形PHCA為矩形,在RtNPH中,根據(jù)sinNPH==即可∠NPH、MPA的度數(shù),進(jìn)而可得出的長(zhǎng).

(1)∵⊙P的直徑=4,


∴⊙P的半徑=2;

(2)∵⊙P與直線有一個(gè)交點(diǎn),

∴位置中的MN與數(shù)軸之間的距離為2,位置中的半⊙P與數(shù)軸的位置關(guān)系是相切;

(3)位置的長(zhǎng)與數(shù)軸上線段ON相等,

的長(zhǎng)為=π,NP=2,

∴位置中的圓心P在數(shù)軸上表示的數(shù)為π+2;

(3)點(diǎn)N所經(jīng)過(guò)路徑長(zhǎng)為=2π,

S半圓==2π,S扇形==4π,

故半⊙P所掃過(guò)圖形的面積為2π+4π=6π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某天小明發(fā)現(xiàn)陽(yáng)光下電線桿AB的影子落在土坡的坡面CD和地面BC上,量的CD=8米,BC=20米,斜坡CD的坡度比為1:,且此時(shí)測(cè)得1米桿的影長(zhǎng)為2米,則電線桿的高度為( )

A.(14+2)米 B.28米 C.(7+)米 D.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定sin(-x)=-sinxcos(-x)=cosx,sinx+y)=sinx·cosycosx·siny.據(jù)此判斷下列等式成立的是_________(填序號(hào))

cos(-60°)=—cos60°=

sin75°sin30°+45°=sin30°·cos45°+cos30°·sin45°=

③sin2xsinx+x)=sinx·cosx+cosx·sinx2sinx·cosx

④sinxy)=sinx·cosycosx·siny

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)

(1)求代數(shù)式mn的值;

(2)若二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,求代數(shù)式的值;

(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象只有一個(gè)交點(diǎn),且該交點(diǎn)在直線的下方,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)某種商品平均每天可銷(xiāo)售30件,每件盈利50元。為了盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施。經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件。設(shè)每件商品降價(jià)元。據(jù)此規(guī)律,請(qǐng)回答:

(1)商場(chǎng)日銷(xiāo)售量增加_____件,每件商品盈利_____元(用含的代數(shù)式表示)。

(2)在上述條件不變、銷(xiāo)售正常情況下,每件商品降價(jià)多少元時(shí),商場(chǎng)日盈利可達(dá)到2100元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀:

對(duì)于兩個(gè)不等的非零實(shí)數(shù).若分式的值為零,則又因?yàn)?/span>.所以關(guān)于的方程有兩個(gè)根分別為

應(yīng)用上面的結(jié)論解答下列問(wèn)題:

1)方程的兩個(gè)解中較小的一個(gè)為    

2)關(guān)于解的方程,首先我們兩邊同加,則 ,兩個(gè)解分別為, ,

3)關(guān)于的方程的兩個(gè)解分別為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市區(qū)九年級(jí)學(xué)生每天的健身活動(dòng)情況,隨機(jī)從市區(qū)九年級(jí)的12000名學(xué)生中抽取了500名學(xué)生,對(duì)這些學(xué)生每天的健身活動(dòng)時(shí)間進(jìn)行統(tǒng)計(jì)整理,作出了如下不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)含最小值不含最大值,統(tǒng)計(jì)數(shù)據(jù)全部為整數(shù)),請(qǐng)根據(jù)以下信息解答如下問(wèn)題:

時(shí)間/分

頻數(shù)

頻率

30~40

25

0.05

40~50

50

0.10

50~60

75

b

60~70

a

0.40

70~80

150

0.30

(1)a=_______,b=_______;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)學(xué)生每天健身時(shí)間的中位數(shù)會(huì)落在哪個(gè)時(shí)間段?

(4)若每天健身時(shí)間在60分鐘以上為符合每天“陽(yáng)光一小時(shí)”的規(guī)定,則符合規(guī)定的學(xué)生人數(shù)大約是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市預(yù)測(cè)某飲料會(huì)暢銷(xiāo)、先用1800元購(gòu)進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購(gòu)進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.

1)第一批飲料進(jìn)貨單價(jià)多少元?

2)若兩次進(jìn)飲料都按同一價(jià)格銷(xiāo)售,兩批全部售完后,獲利不少于2700元,那么銷(xiāo)售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在長(zhǎng)方形紙片ABCD中,點(diǎn)E是邊CD上的一點(diǎn),將AED沿AE所在的直線折疊,使點(diǎn)D落在點(diǎn)F處.

1)如圖1,若點(diǎn)F落在對(duì)角線AC上,且∠BAC54°,則∠DAE的度數(shù)為  °

2)如圖2,若點(diǎn)F落在邊BC上,且AB6AD10,求CE的長(zhǎng).

3)如圖3,若點(diǎn)ECD的中點(diǎn),AF的沿長(zhǎng)線交BC于點(diǎn)G,且AB6,AD10,求CG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案