如圖,下面是一些小正方形組成的圖案,第4個圖案有________個小正方形組成;第n個圖案有________個小正方形組成.

14    n2
分析:根據(jù)題目提供的三個圖形得到有關(guān)小正方形的個數(shù)與圖形的個數(shù)之間的關(guān)系,從而即可求解.
解答:觀察圖形知:
第一個圖形有1=12個小正方形;
第二個圖形有1+3=4=22個小正方形;
第三個圖形有1+3+5=9=32個小正方形;

第n個圖形共有1+2+3+…+(2n-1)=n2個小正方形,
當(dāng)n=4時,有n2=42=16個小正方形.
故答案為:16,n2
點評:本題考查了圖形的變化類問題,解題的關(guān)鍵是根據(jù)圖象的個數(shù)與小正方形的個數(shù)之間的關(guān)系總結(jié)出規(guī)律,并利用此規(guī)律解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)家們通過長期的研究,得到了關(guān)于“等周問題”的重要結(jié)論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當(dāng)圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學(xué)小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎(chǔ)上證明事實2:“等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結(jié)論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

數(shù)學(xué)家們通過長期的研究,得到了關(guān)于“等周問題”的重要結(jié)論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當(dāng)圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學(xué)小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎(chǔ)上證明事實2:“等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結(jié)論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是一些小正方塊所搭幾何體的俯視圖,方格中的數(shù)字

表示該位置的小正體的個數(shù),每個小正方體的邊長為1㎝.

(1)    請在下面方格紙中分別畫出這個幾何體的主視圖和左視圖.

 

 


                                       

                   

左視圖

          

(2)根據(jù)三視圖,請你求出這個組合幾何體的表面積(包括底面積)。

主視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年九年級(上)數(shù)學(xué)月考試卷(二)(英才班)(解析版) 題型:解答題

數(shù)學(xué)家們通過長期的研究,得到了關(guān)于“等周問題”的重要結(jié)論:在周長相同的所有封閉平面曲線中,以圓所圍成的面積最大.
“等周問題”雖然較為繁雜,但其根本思想基于下面2個事實:
事實1:等周長n邊形的面積,當(dāng)圖形為正n邊形時,其面積最大;
事實2:等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.
為了理解這些事實的合理性,曙光數(shù)學(xué)小組走出校門展開了下列課題研究.請你幫助他們解決其中的一些問題.
現(xiàn)有長度為100m的籬笆(可彎曲圍成一個區(qū)域).
(1)如果用籬笆圍成一個長方形雞場,怎樣圍才能使雞場的面積最大?為什么?
(2)如果用籬笆圍成一個正五邊形雞場,那么與(1)中的正方形雞場比較,哪個面積更大?請在事實1的基礎(chǔ)上證明事實2:“等周長n邊形的面積,當(dāng)邊數(shù)n越大時,其面積也越大.”
(3)利用事實1和事實2,請對“等周問題”的重要結(jié)論作出較為合理的解釋.
(4)愛動腦筋的小明提出一個問題:如果借用一條充分長的直墻,將籬笆圍成一個四邊形雞場,為了使雞場的面積盡量大,所圍成的長方形雞場的長是寬的2倍(如圖).你覺得他講的是否有道理?你有沒有更好的方法,使圍成的四邊形雞場的面積更大?如果有,請說明你的方法.

查看答案和解析>>

同步練習(xí)冊答案