【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=α(α<60°),D是BC邊上的一點(diǎn),連接AD,線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,過點(diǎn)E作BC的平行線,交AB于點(diǎn)F,連接DE,BE,DF.

(1)求證:BE=CD;
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明.

【答案】
(1)證明:∵△ABC是等腰三角形,頂角∠BAC=α(α<60°),線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α到AE,

∴AB=AC,

∴∠BAE=∠CAD,

在△ACD和△ABE中,

∴△ACD≌△ABE(SAS),

∴BE=CD


(2)證明:∵AD⊥BC,

∴BD=CD,

∴BE=BD=CD,∠BAD=∠CAD,

∴∠BAE=∠BAD,

在△ABD和△ABE中,

,

∴△ABD≌△ABE(SAS),

∴∠EBF=∠DBF,

∵EF∥BC,

∴∠DBF=∠EFB,

∴∠EBF=∠EFB,

∴EB=EF,

∴BD=BE=EF=FD,

∴四邊形BDFE為菱形


【解析】(1)根據(jù)旋轉(zhuǎn)可得∠BAE=∠CAD,從而SAS證明△ACD≌△ABE,得出答案BE=CD;(2)由AD⊥BC,SAS可得△ACD≌△ABE≌△ABD,得出BE=BD=CD,∠EBF=∠DBF,再由EF∥BC,∠DBF=∠EFB,從而得出∠EBF=∠EFB,則EB=EF,證明得出四邊形BDFE為菱形.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用菱形的判定方法和旋轉(zhuǎn)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形;①旋轉(zhuǎn)后對(duì)應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D′處,折痕l交CD邊于點(diǎn)E,連接BE.

(1)求證:四邊形BCED′是平行四邊形。
(2)若BE平分∠ABC,求證:AB2=AE2+BE2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式:2(x﹣3)﹣2≤0
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△ABE經(jīng)旋轉(zhuǎn),可與△CBF重合,AE的延長線交FC于點(diǎn)M,以下結(jié)論正確的是(

A.AM⊥FC
B.BF⊥CF
C.BE=CE
D.FM=MC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.若AE=2,則FM的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)

(1)請(qǐng)畫出將△ABC向左平移4個(gè)單位長度后得到的圖形△A1B1C1 , 直接寫出點(diǎn)A1的坐標(biāo);
(2)請(qǐng)畫出△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫出點(diǎn)A2的坐標(biāo);
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=CB,延長DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.

(1)求證:∠B=∠D;
(2)若AB=4,BC﹣AC=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 軸于 兩點(diǎn),交 軸于點(diǎn)

(Ⅰ)求拋物線的解析式;
(Ⅱ)若 是拋物線的第一象限圖象上一點(diǎn),設(shè)點(diǎn) 的橫坐標(biāo)為m,
點(diǎn) 在線段 上,CD=m,當(dāng) 是以 為底邊的等腰三角形時(shí),求點(diǎn) 的坐標(biāo);
(Ⅲ)在(Ⅱ)的條件下,是否存在拋物線上一點(diǎn) ,使 ,若存在,求出點(diǎn) 的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊答案