【題目】如圖,在中,點是對角線的中點,點在上,且,連接并延長交于點F.過點作的垂線,垂足為,交于點.
(1)求證:;
(2)若.
①求證:;
②探索與的數(shù)量關(guān)系,并說明理由.
【答案】(1)見解析;(2)①見解析,②,理由見解析.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到∠OAF=∠OCE,證明△OAF≌△OCE,根據(jù)全等三角形的對應(yīng)邊相等證明結(jié)論;
(2)①過A作AM⊥BC于M,交BG于K,過G作GN⊥BC于N,根據(jù)三角形的外角性質(zhì)得到∠BAG=∠BGA;
②證明△AME≌△BNG,根據(jù)全等三角形的性質(zhì)得到ME=NG,根據(jù)等腰直角三角形的性質(zhì)得到BE=GC,根據(jù)(1)中結(jié)論證明即可.
(1)證明:∵四邊形是平行四邊形,
∴,,
∴,
在和中,
,
∴
∴,
∵,
∴;
(2)①過作于,交于,過作于,
則,
∵,
∴,
∵,
∴,,
∵,
∴,又,
∴,
設(shè),
則,,
∴;
②,
理由如下:∵,
∴,
∴,
在和中,
,
∴,
∴,
在等腰中,,
∴,
∴,
∵,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】10袋小麥以每袋150干克為準,超過的干克數(shù)記為正數(shù),不足的干克數(shù)記為負數(shù),分別記為:-6,-3,-1,-2,+7,+3,+4,-3,-2,0.
(1)在這10袋小麥中,最重和最輕的分別重多少干克?
(2)與標準質(zhì)量相比較,這10袋小麥超過或不足多少干克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,且AB=4,點C在半徑OA上(點C與點O、點A不重合),過點C作AB的垂線交⊙O于點D.連接OD,過點B作OD的平行線交⊙O于點E,交CD的延長線于點F.
(1)若點E是的中點,求∠F的度數(shù);
(2)求證:BE=2OC;
(3)設(shè)AC=x,則當(dāng)x為何值時BEEF的值最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知射線OA,從O點再引射線OB,OC,使∠AOB=67°31′,∠BOC=48°39′,則∠AOC的度數(shù)為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有20箱蘋果,以每箱25千克為標準,超過的千克數(shù)用正數(shù)表示,不足的千克數(shù)用負數(shù)表示,結(jié)果記錄如表:
(1)20箱蘋果中,最重的一箱比最輕的一箱重 kg;
(2)與標準質(zhì)量相比,20箱蘋果總計超過或不足多少千克?
(3)若蘋果每千克售價12元,則售出這20箱蘋果可獲得多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家、公交車站、學(xué)校在一條筆直的公路旁(小明家、學(xué)校到這條公路的距離忽略不計),一天,小明從家出發(fā)去上學(xué),沿這條公路步行到公交車站恰好乘上一輛公交車,公交車沿這條公路勻速行駛,小明下車時發(fā)現(xiàn)還有4分鐘上課,于是他沿這條公路跑步趕到學(xué)校(上、下車時間忽略不計),小明與家的距離s(單位:米)與他所用時間t(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,已知小明從家出發(fā)7分鐘時與家的距離為1200米,從上公交車到他到達學(xué)校共用10分鐘,下列說法:
①小明從家出發(fā)5分鐘時乘上公交車 ②公交車的速度為400米/分鐘
③小明下公交車后跑向?qū)W校的速度為100米/分鐘 ④小明上課沒有遲到
其中正確的個數(shù)是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列數(shù):,,,,,,,這串?dāng)?shù)是由小明按照一定規(guī)則寫下來的,他第一次寫下“,”,第二次接著寫“,”,第三次接著寫“,”,第四次接著寫“,”,沿著這個規(guī)則,那么接著“,”后面的三個數(shù)應(yīng)為( )
A.,,B.,,C.,,D.,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=x的圖象與函數(shù)y=(x>0)的圖象相交于點P(2,m).
(1)求m,k的值;
(2)直線y=4與函數(shù)y=x的圖象相交于點A,與函數(shù)y=(x>0)的圖象相交于點B,求線段AB長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[x]表示不超過x的最大整數(shù).如,[π]=3,[2]=2,[﹣2.1]=﹣3.則下列結(jié)論:
①[﹣x]=﹣[x];
②若[x]=n,則x的取值范圍是n≤x<n+1;
③當(dāng)﹣1<x<1時,[1+x]+[1﹣x]的值為1或2;
④x=﹣2.75是方程4x﹣2[x]+5=0的唯一一個解.
其中正確的結(jié)論有_____(寫出所有正確結(jié)論的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com