如圖,已知?jiǎng)狱c(diǎn)A在函數(shù)y=(x>0)的圖象上,AB⊥x軸于點(diǎn)B,AC⊥y軸于點(diǎn)C,延長CA至點(diǎn)D,使AD=AB,延長BA至點(diǎn)E,使AE=AC.直線DE分別交x軸、y軸于點(diǎn)P,Q.當(dāng)QE∶DP=4∶9時(shí),圖中陰影部分的面積等于              .
.

試題分析:過點(diǎn)D作DG⊥x軸于點(diǎn)G,過點(diǎn)E作EF⊥y軸于點(diǎn)F.令A(yù)(t,),則AD=AB=DG=,AE=AC=EF=t,則圖中陰影部分的面積=△ACE的面積+△ABD的面積=,因此只需求出t2的值即可.先在直角△ADE中,由勾股定理,得出DE=,再由△EFQ∽△DAE,求出,△ADE∽△GPD,求出DP=,然后根據(jù)QE:DP=4:9,即可得出t2=.
試題解析:過點(diǎn)D作DG⊥x軸于點(diǎn)G,過點(diǎn)E作EF⊥y軸于點(diǎn)F.
令A(yù)(t,),則AD=AB=DG=,AE=AC=EF=t.
在直角△ADE中,由勾股定理,得
∵△EFQ∽△DAE,
∴QE:DE=EF:AD,
,
∵△ADE∽△GPD,
∴DE:PD=AE:DG,

又∵QE:DP=4:9,
=4:9,
解得t2=
∴圖中陰影部分的面積=AC2+AB2=t2+×=.
考點(diǎn): 反比例函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

反比例函數(shù)y=和正比例函數(shù)y=mx的圖象如圖所示.由此可以得到方程=mx的實(shí)數(shù)根為(     )
A.x=-2B.x=1C.x1=2,x2=-2D.x1=1,x2=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點(diǎn)A在反比例函數(shù)y=(x>0)的圖像上,點(diǎn)B在反比例函數(shù)y=-(x<0)的圖像上,且 ∠AOB=90°,則tan∠OAB (     ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過x軸正半軸上的任意一點(diǎn)P,作y軸的平行線,分別與反比例函數(shù)的圖象交于A、B兩點(diǎn).若點(diǎn)C是y軸上任意一點(diǎn),連接AC、BC,則△ABC的面積為(     )

A.3             B.4              C.5              D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線y=的圖象經(jīng)過第二、四象限,則k的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)(-1,y1),(2,y2),(3,y3)均在函數(shù)y=的圖象上,則y1,y2,y3的大小關(guān)系是( 。
A.y3<y2<y1B.y2<y3<y1
C.y1<y2<y3D.y1<y3<y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

完成y=的圖象,并根據(jù)圖象回答問題.
(1)根據(jù)圖象指出,當(dāng)y=-2時(shí)x的值;
(2)根據(jù)圖象指出,當(dāng)-2<x<1時(shí),y的取值范圍;
(3)根據(jù)圖象指出,當(dāng)-3<y<2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A,B是函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),BC∥x軸,AC∥y軸,△ABC的面積記為S,則(     ).
A.S=2B.S="4" C.2<S<4D.S>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于反比例函數(shù),下列說法不正確的是(   )
A.它的圖象是雙曲線并且在第一、三象限
B.點(diǎn)(-4,)在它的圖象上
C.它的圖象是中心對(duì)稱圖形
D.的增大而增大

查看答案和解析>>

同步練習(xí)冊(cè)答案