精英家教網(wǎng)如圖,將矩形ABCD沿AE折疊,使點(diǎn)D落在BC邊上的F處,已知AB=6,BC=10,則EC=
 
分析:要求CE的長(zhǎng),就必須求出DE的長(zhǎng),如果設(shè)EC=x,那么我們可將DE,EC轉(zhuǎn)化到一個(gè)三角形中進(jìn)行計(jì)算,根據(jù)折疊的性質(zhì)我們可得出AD=AF,DE=EF,那么DE,CE就都轉(zhuǎn)化到直角三角形EFC中了,下面的關(guān)鍵就是求出FC的長(zhǎng),也就必須求出BF的長(zhǎng),在直角三角形ABF中,已知了AB的長(zhǎng),AF=AD=10,因此可求出BF的長(zhǎng),也就有了CF的長(zhǎng),在直角三角形EFC中,可用勾股定理,得出關(guān)于x的一元二次方程,進(jìn)而求出未知數(shù)的值.
解答:解:依題意可得:BC=AD=AF=10,DE=EF.
在△ABF中,∠ABF=90°.
∴BF=
AF2-AB2
=
102-62
=8,
∴FC=10-8=2,
設(shè)EC=x,則EF=DE=6-x.
∵∠C=90°,
∴EC2+FC2=EF2,
∴x2+22=(6-x)2,
解之得:x=
8
3

∴EC=
8
3

故答案為:
8
3
點(diǎn)評(píng):本題考查翻折變換的知識(shí),有一定難度,關(guān)鍵是通過(guò)折疊的性質(zhì),將所求和已知的線(xiàn)段轉(zhuǎn)換到同一個(gè)三角形中是解題的關(guān)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到矩形AB′C′D′,如果CD=2DA=2,那么CC′=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,將矩形ABCD折疊,AE是折痕,點(diǎn)D恰好落在BC邊上的點(diǎn)F處,量得∠BAF=50°,那么∠DEA等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,將矩形ABCD的BC邊折起,使點(diǎn)B落在DC上的點(diǎn)F處得折痕AE,若∠DFA為40°,則∠EAF的度數(shù)是(  )
A、15°B、20°C、25°D、30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖,將矩形ABCD沿直線(xiàn)EF對(duì)折,點(diǎn)D恰好與BC邊上的點(diǎn)H重合,∠GFP=62°,那么∠EHF的度數(shù)等于
56
°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將矩形ABCD繞C點(diǎn)順時(shí)針旋轉(zhuǎn)到矩形CEFG,點(diǎn)E在CD上,若AB=8,BC=6,則旋轉(zhuǎn)過(guò)程中點(diǎn)A所經(jīng)過(guò)的路徑長(zhǎng)為
.(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案