【題目】某小區(qū)開(kāi)展了行車安全,方便居民的活動(dòng),對(duì)地下車庫(kù)作了改進(jìn).如圖,這小區(qū)原地下車庫(kù)的入口處有斜坡AC長(zhǎng)為13米,它的坡度為i12.4,ABBC,為了居民行車安全,現(xiàn)將斜坡的坡角改為13°,即∠ADC13°(此時(shí)點(diǎn)B、C、D在同一直線上).

1)求這個(gè)車庫(kù)的高度AB;

2)求斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離(結(jié)果精確到0.1米).

(參考數(shù)據(jù):sin13°≈0.225cos13°≈0.974,tan13°≈0.231cot13°≈4.331

【答案】(1)這個(gè)車庫(kù)的高度AB為5米;(2)斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.

【解析】

1)根據(jù)坡比可得,利用勾股定理求出AB的長(zhǎng)即可;(2)由(1)可得BC的長(zhǎng),由∠ADB的余切值可求出BD的長(zhǎng),進(jìn)而求出CD的長(zhǎng)即可.

1)由題意,得:∠ABC90°i12.4

RtABC中,i,

設(shè)AB5x,則BC12x,

AB2+BC2AC2,

AC13x,

AC13,

x1,

AB5,

答:這個(gè)車庫(kù)的高度AB5米;

2)由(1)得:BC12

RtABD中,cotADC,

∵∠ADC13°AB5,

DB5cot13°≈21.655m),

DCDBBC21.655129.655≈9.7(米),

答:斜坡改進(jìn)后的起點(diǎn)D與原起點(diǎn)C的距離為9.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1); (2)

(3)2x2-6x-1=0. (4)2y(y+2)-y=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y[

1)求出yx的函數(shù)關(guān)系式;

2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷售過(guò)程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC∽△A′B′C′,AB=4 cm,A′B′=3 cm,AD,A′D′分別為ABCA′B′C′的中線,下列結(jié)論中:①ADA′D′=43;②△ABD∽△A′B′D′;③△ABD∽△A′B′C′;④△ABCA′B′C′對(duì)應(yīng)邊上的高之比為43.其中結(jié)論正確的序號(hào)是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=14.5米,NF=0.2米.設(shè)太陽(yáng)光線與水平地面的夾角為α,當(dāng)α=56.3°時(shí),測(cè)得樓房在地面上的影長(zhǎng)AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的NF這層上曬太陽(yáng).

(1)求樓房的高度約為多少米?

(2)過(guò)了一會(huì)兒,當(dāng)α=45°時(shí),問(wèn)小貓能否還曬到太陽(yáng)?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin56.3°≈0.83,cos56.3°≈0.55,tan56.3°≈1.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點(diǎn)E是邊AD上一點(diǎn),EMBCAB于點(diǎn)M,點(diǎn)N在射線MB上,且AEAMAN的比例中項(xiàng).

1)如圖1,求證:∠ANE=∠DCE;

2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且ACNE互相垂直,求MN的長(zhǎng);

3)連接AC,如果AEC與以點(diǎn)EMN為頂點(diǎn)所組成的三角形相似,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3),B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PAPB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax22ax3a≠0)的圖象經(jīng)過(guò)點(diǎn)A

1)求二次函數(shù)的對(duì)稱軸;

2)當(dāng)A(﹣10)時(shí),

①求此時(shí)二次函數(shù)的表達(dá)式;

②把yax22ax3化為yaxh2+k的形式,并寫(xiě)出頂點(diǎn)坐標(biāo);

③畫(huà)出函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C是⊙O上一點(diǎn),連接BCAC,ODBCE

1)求證:ODAC;

2)若BC8DE3,求⊙O的直徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案