如圖,觀察圖中菱形的個數(shù):圖1中有1個菱形,圖2中有5個菱形,圖3中有14個菱形,圖4中有30個菱形……,則第6個圖中菱形的個數(shù)是          個.
36

試題考查知識點:找出圖形個數(shù)的一般規(guī)律表達式
思路分析:找出規(guī)律即可得出任意個圖的形狀
具體解答過程:
圖1中菱形的個數(shù):M1=1=12
圖2中菱形的個數(shù):M2=5=22+1
圖3中菱形的個數(shù):M3=14=32+22+1
圖4中菱形的個數(shù):M4=30=42+32+22+1
……
圖n中菱形的個數(shù):Mn=n2+(n-1)2+……+52+42+32+22+1 =
∴當n=6時,M6=91
試題點評:這類題目的關(guān)鍵在于找出規(guī)律的一般表達式。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,A=90,AB=4,AC=3,D在BC上運動(不與B、C重合),過D點分別向AB、Ac作垂線,垂足分別為E、F,則矩形AEDF的面積的最大值為___________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

明德小學(xué)為了美化校園,準備在一塊長32米,寬20米的長方形場地上修筑兩條寬度相同的道路,余下部分作草坪,現(xiàn)在有一位學(xué)生設(shè)計了如圖所示的方案,求圖中道路的寬是___________     米時,草坪面積為540平方米。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,從邊長為(a+3)cm的正方形紙片中剪去一個邊長為3cm的正方形,剩余部分沿虛線又剪拼成一個矩形(不重疊無縫隙),若拼成的矩形一邊長為acm,則另一邊長是(  ▲   )
A.(2 a+3)cmB.(2 a+6)cm
C.(2a+3)cmD.(a+6)cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(11·貴港)如圖所示,在梯形ABCD中,AB∥CD,E是BC的中點,EF⊥AD
于點F,AD=4,EF=5,則梯形ABCD的面積是
A.40B.30C.20D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖7,菱形ABCD中,E是對角線AC上一點.    

(1)求證:△ABE≌△ADE;(3分)
(2)若AB=AE,∠BAE=36º,求∠CDE的度數(shù).(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
(1)如果△ABC的面積是S,E是BC的中點,連接AE(如圖1),則△AEC的面積是           ;
(2)在△ABC的外部作△ACD,F(xiàn)是AD的中點,連接CF(如圖2),若四邊形ABCD的面積是S,則四邊形AECF的面積是            ;
(3)若任意四邊形ABCD的面積是S,E、F分別是一組對邊AB、CD的中點,連接AF,CE(如圖3),則四邊形AECF的面積是            

圖1             圖2                圖3
拓展與應(yīng)用
(1)若八邊形ABCDEFGH的面積是100,K、M、N、O、P、Q分別是AB、BC、CD、EF、FG、GH的中點,連接KH、MG、NF、OD、PC、QB、(如圖4),則圖中陰影部分的面積是            ;
(2)四邊形ABCD的面積是100,E、F分別是一組對邊AB、CD上的點,且AE=AB,
CF=CD,連接AF,CE(如圖5),則四邊形AECF的面積是            ;
(3)(如圖6)ABCD的面積是2,AB=a,BC=b,點E從點A出發(fā)沿AB以每秒v個單位長的速度向點B運動,點F從點B出發(fā)沿BC以每秒個單位長的速度向點C運動.E、F分別從點A、B同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.請問四邊形DEBF的面積的值是否隨著時間t的變化而變化?若不變,請寫出這個值         ,并寫出理由;若變化,說明是怎樣變化的.

圖4                  圖5                     圖6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•寧夏)已知,E、F是四邊形ABCD的對角線AC上的兩點,AE=CF,BE=DF,BE∥DF.求證:四邊形A BCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·天水)(10分)某校開展的一次動漫設(shè)計大賽,楊帆同學(xué)運用了數(shù)學(xué)知識
進行了富有創(chuàng)意的圖案設(shè)計,如圖(1),他在邊長為1的正方形ABCD內(nèi)作等邊△BCE,
并與正方形的對角線交于點F、G,制作如圖(2)的圖標,請我計算一下圖案中陰影圖形的
面積.

查看答案和解析>>

同步練習冊答案