如圖,△ABC中,∠ACB=90°,D為AB中點,四邊形BCED為平行四邊形,DE、AC相交于F.
(1)試確定四邊形ADCE的形狀,并說明理由;
(2)若AB=16,AC=12,求四邊形ADCE的面積;
(3)若四邊形ADCE為正方形,△ABC應(yīng)添加什么條件,并證明你的結(jié)論.

證明:(1)∵平行四邊形DBEC,
∴CE∥BD,CE=BD,
∵D為AB中點,
∴AD=BD,
∴CE∥AD,CE=AD,
∴四邊形ADCE為平行四邊形,
又BC∥DE,
∴∠AFD=∠ACB=90°,
∴AC⊥DE,
故四邊形ADCE為菱形,

(2)在Rt△ABC中,∵AB=16,AC=12,
∴BC=4
∵D為AB中點,F(xiàn)也為AC的中點,
∴DF=2,
∴四邊形ADCE的面積=AC×DF=24

(3)應(yīng)添加條件AC=BC.
證明:∵AC=BC,D為AB中點,
∴CD⊥AB(三線合一的性質(zhì)),即∠ADC=90°.
∵四邊形BCED為平行四邊形,四邊形ADCE為平行四邊形,
∴DE=BC=AC,∠AFD=∠ACB=90°.
∴四邊形ADCE為正方形.(對角線互相垂直且相等的四邊形是正方形)
分析:(1)由題意容易證明CE平行且等于AD,又知AC⊥DE,所以得到四邊形ADCE為菱形;
(2)根據(jù)解三角形的知識求出AC和DF的長,然后根據(jù)菱形的面積公式求出四邊形ADCE的面積;
(3)應(yīng)添加條件AC=BC,證明CD⊥AB且相等即可.
點評:本題主要考查正方形的判定、菱形的判定與性質(zhì)和勾股定理等知識點,此題是道綜合體,有一定的難度,解答的關(guān)鍵還是要能熟練掌握各種四邊形的基本性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案