【題目】二次函數(shù)y=ax2+bx+4的圖像與x軸交于兩點(diǎn)A、B,與y軸交于點(diǎn)C,且A(﹣1,0)、B(4,0)

(1)求此二次函數(shù)的表達(dá)式
(2)如圖1,拋物線的對(duì)稱(chēng)軸m與x軸交于點(diǎn)E,CD⊥m,垂足為D,點(diǎn)F(﹣ ,0),動(dòng)點(diǎn)N在線段DE上運(yùn)動(dòng),連接CF、CN、FN,若以點(diǎn)C、D、N為頂點(diǎn)的三角形與△FEN相似,求點(diǎn)N的坐標(biāo)
(3)如圖2,點(diǎn)M在拋物線上,且點(diǎn)M的橫坐標(biāo)是1,點(diǎn)P為拋物線上一動(dòng)點(diǎn),若∠PMA=45°,求點(diǎn)P的坐標(biāo).

【答案】
(1)

解:當(dāng)x=0時(shí),y=4,

∴C(0,4).

設(shè)拋物線的解析式為y=a(x+1)(x﹣4),將點(diǎn)C的坐標(biāo)代入得:﹣4a=4,解得a=﹣1,

∴拋物線的解析式為y=﹣x2+3x+4


(2)

解:x=﹣ =

∴CD= ,EF=

設(shè)點(diǎn)N的坐標(biāo)為( ,a)則ND=4﹣a,NE=a.

當(dāng)△CDN∽△FEN時(shí), ,即 ,解得a= ,

∴點(diǎn)N的坐標(biāo)為( , ).

當(dāng)△CDN∽△NEF時(shí), ,即 = ,解得:a=2.

∴點(diǎn)N的坐標(biāo)為( ,2).

綜上所述,點(diǎn)N的坐標(biāo)為( , )或( ,2)


(3)

解:如圖所示:過(guò)點(diǎn)A作AD∥y軸,過(guò)點(diǎn)M作DM∥x軸,交點(diǎn)為D,過(guò)點(diǎn)A作AE⊥AM,取AE=AM,作EF⊥x軸,垂足為F,連結(jié)EM交拋物線與點(diǎn)P.

∵AM=AE,∠MAE=90°,

∴∠AMP=45°.

將x=1代入拋物線的解析式得:y=6,

∴點(diǎn)M的坐標(biāo)為(1,6).

∴MD=2,AD=6.

∵∠DAM+∠MAF=90°,∠MAF+∠FAE=90°,

∴∠DAM=∠FAE.

在△ADM和△AFE中, ,

∴△ADM≌△AFE.

∴EF=DM=2,AF=AD=6.

∴E(5,﹣2).

設(shè)EM的解析式為y=kx+b.

將點(diǎn)M和點(diǎn)E的坐標(biāo)代入得: ,解得k=﹣2,b=8,

∴直線EM的解析式為y=﹣2x+8.

將y=﹣2x+8與y=﹣x2+3x+4聯(lián)立,解得:x=1或x=4.

將x=4代入y=﹣2x+8得:y=0.

∴點(diǎn)P的坐標(biāo)為(4,0)


【解析】(1)先求得點(diǎn)C的坐標(biāo),設(shè)拋物線的解析式為y=a(x+1)(x﹣4),將點(diǎn)C的坐標(biāo)代入求得a的值,從而得到拋物線的解析式;(2)先求得拋物線的對(duì)稱(chēng)軸,然后求得CD,EF的長(zhǎng),設(shè)點(diǎn)N的坐標(biāo)為(0,a)則ND=4﹣a,NE=a,然后依據(jù)相似三角形的性質(zhì)列出關(guān)于a的方程,然后可求得a的值;(3)過(guò)點(diǎn)A作AD∥y軸,過(guò)點(diǎn)M作DM∥x軸,交點(diǎn)為D,過(guò)點(diǎn)A作AE⊥AM,取AE=AM,作EF⊥x軸,垂足為F,連結(jié)EM交拋物線與點(diǎn)P.則△AME為等腰直角三角形,然后再求得點(diǎn)M的坐標(biāo),從而可得到MD=2,AD=6,然后證明∴△ADM≌△AFE,于是可得到點(diǎn)E的坐標(biāo),然后求得EM的解析式為y=﹣2x+8,最后求得直線EM與拋物線的交點(diǎn)坐標(biāo)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC,已知點(diǎn)D在線段AB的反向延長(zhǎng)線上,過(guò)AC的中點(diǎn)F作線段GEDAC的平分線于E,BCGAEBC

(1)求證ABC是等腰三角形;

(2)AE=8,AB=10,GC=2BGABC的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。

(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;

(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,EAB的中點(diǎn),連接CE,連接DEACF,AD=4,AB=6.

(1)求證:△ADC∽△ACB;

(2)AC的值;

(3)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題共6分)已知在紙面上有一數(shù)軸(如圖所示).

操作一:

(1)折疊紙面,使數(shù)1表示的點(diǎn)與數(shù)﹣1表示的點(diǎn)重合,則此時(shí)數(shù)﹣2表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;

操作二:

(2)折疊紙面,使數(shù)5表示的點(diǎn)與數(shù)﹣1表示的點(diǎn)重合,回答下列問(wèn)題:

數(shù)6表示的點(diǎn)與數(shù) 表示的點(diǎn)重合;

若這樣折疊后,數(shù)軸上有A、B兩點(diǎn)也重合,且A、B兩點(diǎn)之間的距離為11(A在B的左側(cè)),則A點(diǎn)表示的數(shù)為 ,B點(diǎn)表示的數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某音樂(lè)廳五月初決定在暑假期間舉辦學(xué)生專(zhuān)場(chǎng)音樂(lè)會(huì),入場(chǎng)券分為團(tuán)體票和零售票,其中團(tuán)體票占總數(shù)的,若提前購(gòu)票,則給予不同程序的優(yōu)惠:若在五月份內(nèi),團(tuán)體票每張12元,共售出團(tuán)體票數(shù)的;零售票每張16元,共售出零售票數(shù)的一半;如果在六月份內(nèi),團(tuán)體票按每張16元出售,并計(jì)劃在六月份售出全部余票,設(shè)六月份零售票按每張x元定價(jià),總票數(shù)為a張.

(1)五月份的票價(jià)總收入為_____元;六月份的總收入為______元;

(2)當(dāng)x為多少時(shí),才能使這兩個(gè)月的票款收入持平?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°ABAC,點(diǎn)DBC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊ABAC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AECF;③△BDE≌△ADFBECFEF,其中正確結(jié)論是( )

A. ①②④ B. ②③④

C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年,我省啟動(dòng)了“愛(ài)護(hù)眼睛保護(hù)視力”儀式,某小學(xué)為了了解各年級(jí)戴近視鏡的情況,對(duì)一到六年級(jí)近視的學(xué)生進(jìn)行了統(tǒng)計(jì),得到每個(gè)年紀(jì)的近視的兒童人數(shù)分別為20,30,20,34,36,40,對(duì)于這組數(shù)據(jù),下列說(shuō)法錯(cuò)誤的是(
A.平均數(shù)是30
B.眾數(shù)是20
C.中位數(shù)是34
D.方差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行校園好聲音歌手大賽,初、高中部根據(jù)初賽成績(jī),各選出名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.每個(gè)隊(duì)名選手的決賽成績(jī)?nèi)鐖D所示:

填表:

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中代表隊(duì)

高中代表隊(duì)

結(jié)合兩隊(duì)決賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)代表隊(duì)的成績(jī)較好;

計(jì)算兩隊(duì)決賽成績(jī)的方差,并判斷哪個(gè)代表隊(duì)的成績(jī)較為穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊(cè)答案