【答案】
分析:(1)可通過證明三角形ABC和三角形ACF全等來實(shí)現(xiàn).因?yàn)锳D=AF,AB=AC,只要證明∠BAD=∠CAF即可,∠BAD=90°-∠DAC=∠FAC,這樣就構(gòu)成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因?yàn)椤螧+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD.
(2)可通過構(gòu)建三角形來求解.過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,如果CF⊥BD,那么∠ACF=∠AGD=90°-∠ACD,又因?yàn)椤螱AD=∠CAE=90°-∠CAD.AG=AC那么根據(jù)AAS可得出△AGD≌△ACF,AG=AC,又因?yàn)椤螱AC=90°,可得出∠BCA=45°.
因此△BAC滿足∠BCA=45°時(shí),CF⊥BD.
(3)過點(diǎn)A作AQ⊥BC交BC的延長線于點(diǎn)Q,通過構(gòu)建與線段相關(guān)的三角形相似來求解.
圖中我們可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出關(guān)于CP、CD、AQ、QD的比例關(guān)系,因?yàn)椤螧CA=45°,∠Q=90°,那么AQ=QC=2,如果設(shè)CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例關(guān)系,那么可得出關(guān)于CP和x的函數(shù)關(guān)系式,然后根據(jù)函數(shù)的性質(zhì)和x的取值范圍求出CP的最大值.
解答:解:(1)①CF與BD位置關(guān)系是垂直,數(shù)量關(guān)系是相等
②當(dāng)點(diǎn)D在BC的延長線上時(shí)①的結(jié)論仍成立
由正方形ADEF得AD=AF,∠DAF=90度
∵∠BAC=90°,
∴∠DAF=∠BAC,
∴∠DAB=∠FAC
又∵AB=AC,
∴△DAB≌△FAC,
∴CF=BD
∠ACF=∠ABD
∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°
∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)當(dāng)∠BCA=45°時(shí),CF⊥BD(如圖)
理由是:過點(diǎn)A作AG⊥AC交BC于點(diǎn)G,∴AC=AG
可證:△GAD≌△CAF∴∠ACF=∠AGD=45°
∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)當(dāng)具備∠BCA=45°時(shí),
過點(diǎn)A作AQ⊥BC交CB的延長線于點(diǎn)Q,(如圖),
∵DE與CF交于點(diǎn)P時(shí),此時(shí)點(diǎn)D位于線段CQ上,
∵∠BCA=45°,AC=2
,
∴由勾股定理可求得AQ=CQ=2.
設(shè)CD=x,∴DQ=2-x,
∵∠ADB+∠ADE+∠PDC=180°
且∠ADE=90°,
∴∠ADQ+∠PDC=90°,
又∵在直角△PCD中,∠PDC+∠DPC=90°
∴∠ADQ=∠DPC,
∵∠AQD=∠DCP=90°
∴△AQD∽△DCP,
∴
=
,∴
.
∴CP=
x
2+x=
(x-1)
2+
.
∵0<x≤
,
∴當(dāng)x=1時(shí),CP有最大值
.
點(diǎn)評:本題中綜合考查了正方形的性質(zhì),全等三角形的判定以及函數(shù)關(guān)系式等綜合知識.本題的關(guān)鍵是根據(jù)題意通過作輔助線來構(gòu)建出和已知,所求等條件相關(guān)的三角形,然后通過相似,全等等知識來求解.