如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(≈1.732,結(jié)果保留三個有效數(shù)字).

 

【答案】

26.0米

【解析】解:過點B作BE⊥MN于點E,

則CE=AB=30米,CD=CE+ED,AC=BE。

設(shè)河的寬度為x,

在Rt△ACD中,∵AC⊥MN,CE=AB=30米,∠ADC=30°,

=tan∠ADC,即,即。

在Rt△BED中,=tan∠BDC,即,即,。

,解得。

答:這條河的寬度為26.0米。

過點B作BE⊥MN于點E,則CE=AB=30米,CD=CE+ED,AC=BE,在Rt△ACD中,由銳角三角函數(shù)的定義可知,=tan∠ADC,在Rt△BED中,=tan∠BDC,兩式聯(lián)立即可得出AC的值,即這條河的寬度�!�

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(
3
≈1.732,結(jié)果保留三個有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(數(shù)學(xué)公式≈1.732,結(jié)果保留三個有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年1月中考數(shù)學(xué)模擬試卷(24)(解析版) 題型:解答題

如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(≈1.732,結(jié)果保留三個有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年遼寧省鞍山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點A處和點B處各有一棵大樹,AB=30米,某人在河岸MN上選一點C,AC⊥MN,在直線MN上從點C前進一段路程到達點D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(≈1.732,結(jié)果保留三個有效數(shù)字).

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷