如圖,拋物線與x軸交于A(,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線上第三象限內(nèi)的一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCP的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABCP的面積;
(3)點(diǎn)M在拋物線對(duì)稱軸上,點(diǎn)N是平面內(nèi)一點(diǎn),是否存在這樣的點(diǎn)M、N,使得以點(diǎn)M、N、B、C為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(1) (2)四邊形ABCP的面積的最大值為,點(diǎn)P坐標(biāo)為 (3)存在;M1(,) M2(,) M3(,) M4 (,) M5(,)
解析試題分析:⑴拋物線與x軸交于A(,0)、B(3,0)兩點(diǎn),則;解得,所以拋物線的解析式是
⑵過P點(diǎn)做PD垂直于X軸;四邊形ABCP的面積=三角形OBC的面積+三角形APD的面積+梯形OCPD的面積;拋物線與y軸的交點(diǎn)是C,C的坐標(biāo)(0,y)解得y=-4,則OC=4,而OC是三角形ABC的高;拋物線與x軸交于A(,0)、B(3,0)兩點(diǎn),OC=3,則;設(shè)P點(diǎn)的坐標(biāo)為(x,y); 點(diǎn)P是拋物線上第三象限內(nèi)的一動(dòng)點(diǎn),PD="-y,OD=-x;" 則==
當(dāng)x+2=0即x=-2時(shí)四邊形ABCP的面積的最大值為=+6=
點(diǎn)P坐標(biāo)為
⑶點(diǎn)M在拋物線對(duì)稱軸上,拋物線的函數(shù)關(guān)系式,其對(duì)稱軸X=;在直角三角形OBC中BC=5;點(diǎn)N是平面內(nèi)一點(diǎn),使得以點(diǎn)M、N、B、C為頂點(diǎn)的四邊形是菱形,根據(jù)菱形的性質(zhì)四邊相等解得
M1(,) M2(,) M3(,) M4 (,)
M5(,)
考點(diǎn):二次函數(shù)
點(diǎn)評(píng):考查二次函數(shù)的知識(shí),本題要求學(xué)生掌握用待定系數(shù)法求二次函數(shù)的解析式,本題難度較大,但(1)小問比較簡單,要求學(xué)生會(huì)做,后面兩小問,難度較大,要求中等成績以上的學(xué)生要會(huì)做
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com